Main Article Content

Abstract

Abstract
Minimally-processed mango is a perishable product due to high respiration and transpiration and microbial decay. Edible coating is one of the alternative methods to maintain the quality of minimally - processed mango. The objective of this study was to evaluate the effects of bionanocomposite edible
coating from tapioca and ZnO nanoparticles (NP-ZnO) on quality of minimally - processed mango cv. Arumanis, stored for 12 days at 8°C. The combination of tapioca and NP-ZnO (0, 1, 2% by weight of tapioca) were used to coat minimally processed mango. The result showed that application of bionanocomposite edible coatings were able to maintain the quality of minimally-processed mango during the storage periods. The bionanocomposite from tapioca + NP-ZnO (2% by weight of tapioca) was the most effective in reducing
weight loss, firmness, browning index, total acidity, total soluble solids ,respiration, and microbial counts. Thus, the use of bionanocomposite edible coating might provide an alternative method to maintain storage quality of minimally-processed mango.

Abstrak
Mangga terolah minimal merupakan produk yang cepat mengalami kerusakan dikarenakan respirasi yang cepat, transpirasi dan kerusakan oleh mikroba. Edible coating merupakan salah satu alternatif metode untuk mempertahankan mutu mangga terolah minimal. Tujuan dari penelitian ini adalah untuk mengevaluasi pengaruh pelapis bionanokomposit dari tapioka dan nanopartikel ZnO (NP-ZnO) terhadap mutu mangga terolah minimal cv. Arumanis yang disimpan selama 12 hari pada suhu 8oC. Kombinasi
dari tapioka dan NP-ZnO (0, 1, 2% b/b tapioka) digunakan untuk melapisi mangga terolah minimal. Hasil menunjukkan bahwa pelapisan bionanokomposit mampu mempertahankan mutu mangga terolah minimal selama penyimpanan. Bionanokomposit dari tapioka + NP-ZnO (2% b/b tapioka) paling efektif dalam menghambat penurunan susut bobot, kekerasan, indeks pencoklatan, total asam, total padatan terlarut, respirasi dan total mikroba. Dengan demikian, pelapis bionanokomposit dapat digunakan sebagai salah satu alternatif untuk mempertahankan kualitas mangga terolah minimal selama penyimpanan.

Keywords

mango minimally-processed bionanocomposite tapioca NP-ZnO

Article Details

References

  1. Arabi, F., M. Imandar, M. Negahdary, M. Imandar, M.T. Noughabi, H. Akbari-dastjerdi, M. Fazilati. 2012. Investigation anti-bacterial effect of zinc oxide nanoparticles upon life of Listeria monocytogenes. Annals of Biological Research 7: 3679 - 3685.
  2. Avella, M., A. Buzarovska, M.E. Errico, G. Gentile, A. Grozdanov. 2009. Eco-challenges of biobased polymer composites. Materials. 2: 911 - 925.
  3. Badan Pengawas Obat dan Makanan. 2009. Penetapan batas maksimum cemaran mikroba dan kimia dalam makanan. Jakarta (ID): Kementrian Kesehatan.
  4. Chantanawarangoon, S. 2000. Quality maintenance of fresh-cut mango cubes. (Thesis). Department of Food Science, University of California. Davis.
  5. Corbo, M.R., B. Speranza, D. Campaniello, D.D. Amato, M. Sinigaglia. 2010. Fresh-cut fruits preservation: current status and emerging technologies. Formatex: 1143 - 1154.
  6. Duncan, T.V. 2011. Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science. 363: 1 - 24.
  7. Garnida, Y. 2006. Pembuatan bahan edibel coating dari sumber karbohidrat, protein dan lipid untuk aplikasi pada buah terolah minimal. Infomatek. 8 (4): 207 - 222.
  8. Hermandz-Munoz, P., E. Almenar, V.D. Valle, D.Velez and R. Gavara. 2008. Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragar ananassa) quality during refrigerated storage. Food Chemistry. 110 (2): 428 - 435.
  9. Laurila, E. dan R. Ahvenainen. 2002. Minimal processing in practice fresh fruits and vegetables. (GB): Woodhead Publishing Limited.
  10. Lee, J.Y., H.J. Park, C.Y. Lee, W.Y. Choi. 2003. Extending shelf-life of minimally processed apples with edible coatings and antibrowning agents. Lebensmittel-Wissenschaft &
  11. Technologie. 36: 323 - 329.
  12. Li, X., W. Li, Y. Jiang, Y. Ding, J. Yun, Y. Tang, P. Zhang. 2011. Effect of nano-ZnO coated active packaging on quality of fresh-cut fuji apple. International Journal of Food Science and Technology. 46: 1947 - 1955.
  13. Lin, D. dan Y. Zhao. 2007. Innovation in the development and application of edible coating for fresh and minimally processed fruits and vegetables. Comprehensive Reviews in Food Science and Food Safety. 6: 60 - 75.
  14. Marpaung, M., U. Ahmad, N.E. Suyatma. 2015. Pelapis Nanokomposit untuk Pengawetan Salak Pondoh Terolah Minimal. Jurnal Keteknikan Pertanian. 3: 73 - 80.
  15. Muchtadi, T.R., Sugiyono, F. Ayustaningwarno. 2010. Ilmu pengetahuan bahan pangan. Bogor (ID): Alfabeta.
  16. Pusat Data dan Sistem Informasi Pertanian. 2013.
  17. Buletin bulanan indikator makro sektor pertanian.
  18. Jakarta (ID): Kementrian Pertanian.
  19. Rojas, M.A., R. Soliva-Fortuny, O. Mart. 2009. Edible coatings to incorporate active ingredients to freshcut. Trends in Food Science & Technology. 20: 1 - 10.
  20. Sabarisman, I., N.E. Suyatma, U. Ahmad, F.M. Taqi. 2015. Aplikasi Nanocoating Berbasis Pektin dan Nanopartikel ZnO untuk Mempertahankan Kesegaran Salak Pondoh. Jurnal Mutu Pangan. 2 (1): 50 - 56.
  21. Setiasih, I.S. 1999. Kajian perubahan mutu salak pondoh dan mangga arumanis terolah minimal berlapis film edibel selama penyimpanan. (Disertasi). Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, IPB. Bogor.
  22. Shi, L., S. Gunasekaran. 2008. Preparation of pectin-ZnO nanocomposite. Nanoscale Research Letters. 3: 491- 495.
  23. Sothornvit, R. dan P. Rodsamran. 2008. Effect of a mango film on quality of whole and minimally processed mangoes. Postharvest Biology and Technology. 47: 407 - 415.
  24. Souza, B.S.D., T.J. O’Hare, J.F. Durigan, P.S. Souza. 2006. Impact of atmosphere, organic acids, and calcium on quality of fresh-cut Kensington mango. Postharvest Biology and Technology. 42 (2): 161 - 167.
  25. Yousef, J.M. dan E.N. Danial. 2012. In vitro antibacterial activity and minimum inhibitory concentration of zinc oxide and nano-particle zinc oxide against pathogenic strains. Journal of Health Sciences. 2 (4): 38 - 42.