Main Article Content

Abstract

Abstract
Anthocyanins from different sources have been reported for its potential as thermal process indicator. This research aimed in particular to study the color degradation kinetics of anthoyanin from Roselle and in general to provide alternative natural indicator for thermal process. Roselle’s anthocyanin extract was incorporated into 3 biodegradable films (i.e agar, pectin, PVA). Thermal degradation kinetics of anthocyanin’s color (ΔE and Chroma) in biodegradable film was studied at selected temperatures (80oC, 90oC, and 100oC). The color change was observed at minute 0, 30, 60 and 120 by computer vision method. The results showed that anthocyanin incorporated into PVA film had the highest value of activation energy (Ea), while anthocyanin incorporated into pectin film had the smallest value of Ea. Lower value of Ea indicating that the anthocyanin chroma is easily degraded at low temperature. Higher value of Ea indicating that it needs
higher energy or higher temperature to degrade the color. The results of this study showed that anthocyanin in PVA film can be selected as indicator for high temperature thermal process (e.g. sterilization), while anthocyanin in pectin film can be used in lower temperature thermal process (e.g. pasteurization).

 

Abstrak
Potensi antosianin dari berbagai sumber sebagai indikator proses termal alami telah banyak dilaporkan. Penelitian ini bertujuan mempelajari kinetika degradasi warna film-antosianin serta menentukan kombinasi
biodegradable film-antosianin terbaik sebagai alternatif indikator proses termal. Pengamatan kinetik ini dilakukan pada suhu 80oC, 90oC, dan 100oC dan parameter degradasi warna yang diukur adalah ΔE dan
Chroma. Hasil penelitian menunjukkan bahwa antosianin pada film PVA mempunyai nilai energi aktivasi (Ea) paling besar, sedangkan antosianin pada film pektin mempunyai nilai Ea paling kecil. Nilai Ea degradasi
warna antosianin yang kecil pada film pektin menunjukkan bahwa degradasi warna sudah dapat berjalan pada suhu yang rendah. Sedangkan nilai Ea degradasi warna antosianin yang lebih besar pada film PVA menunjukkan bahwa antosianin pada film tersebut merupakan yang paling sensitif terhadap perubahan suhu dan paling signifikan perubahan warnanya. Namun perubahan warna yang signifikan pada antosianin
pada film PVA membutuhkan suhu yang lebih tinggi sehingga lebih tepat untuk digunakan sebagai indikator pada proses termal dengan suhu yang tinggi (misalnya sterilisasi), sedangkan antosianin pada film pektin dapat digunakan pada proses termal dengan suhu yang lebih rendah (misalnya pasteurisasi).

Keywords

Anthocyanin color degradation roselle thermal process indicator

Article Details

Author Biographies

Rozi Satria Utama, Institut Pertanian Bogor

Program Studi Ilmu Pangan, Institut Pertanian Bogor

Nugraha Edhi Suyatma, Institut Pertanian Bogor

Departemen Ilmu dan Teknologi Pangan,

Institut Pertanian Bogor

Nancy Dewi Yulliana, Institut Pertanian Bogor

Departemen Ilmu dan Teknologi Pangan,

Institut Pertanian Bogor

References

  1. Ananga, A., V. Georgiev , J. Ochieng, B. Phills and V. Tsolova. 2013. Production of anthocyanins in grape cell cultures: a potential source of raw material for pharmaceutical, food, and cosmetic industries in
  2. The Meditteranean Genetic Code – Grapevine and Olive, Chapter 11 p 247-287
  3. Cao, S.Q., L. Liu and S.Y. Pan. 2011. Thermal degradation kintics of anthocyanin and visual color of blodd orange juice. Agricultural Sciences in
  4. China 10(12); 1992-1997
  5. [CIE] Commision Internationale De L’Eclairage. 2004. Technical report colorimetry – third edition. [Internet]. [diunduh Mar 12]. Tersedia pada: http://cie.mogi.bme.hu/cie_arch/kee/div1/tc148.pdf.
  6. Fernandes, A., G. Ivanova, N.F. Bras, N. Mateus, M.J. Ramos, M. Rangel and V. Freitas. 2014. Structural characterization of inclusion complexes between cyanidin-3-O-glucoside and β-cyclodextrin. Carbohydrate Polymers. 102: 269-277.
  7. Guan, Y. and Q. Zhong. 2015. The improved thermal stability of anthocyanins at pH 5,0 by gum arabic. Food Science and Technology. 64: 706-712.
  8. Jimenez, N., P. Bohuon, J. Lima, M. Dornier, F. Vaillant and A.M. Perez. 2010. Kinetics of anthocyanin degradation and browning in reconstituted
  9. blackberry juice treated at high temperatures (100- 180oC). Journal of Agricultural and Food Chemistry.58, 2314-2322.
  10. Juniarka, I.G.A., E. Lukitaningsih, S. Noegrohati. 2011. Analisis aktivitas antioksidan dan kandungan antosianin total ekstrak dan liposom kelopak
  11. bunga rosella (hibiscus sabdariffa l.). Majalah Obat Tradisional. 16(3): 115 – 123.
  12. Markakis, P., G.E. Livingstone and R.C. Fellers. 1957. Quantitative aspects of strawberry, pigment degradation. Food Research. 22: 117-130.
  13. Moura, S.C.S.R., P. Prati, F.Z. Vissotto, R.C.S.C. Ormenese and M.S. Rafacho. 2011. Color degradation kinetics in low-calorie strawberry and
  14. guava jellies. Ciencia e Tecnologia de Alimentos 31(3): 758-764
  15. Nikkhah, E., M. Khayamy, R. Heidari and R. Jamee. 2007. Effect of Sugar Treatment on Stability of Anthocyanin Pigments in Berries. Journal of
  16. Biological Sciences 7(8): 1412-1417
  17. Oancea, S. And O. Draghici. 2013. pH and thermal stability of anthocyanin-based optimised extracts of romanian red onion cultivars. Czech Journal of
  18. Food Science. 31(3): 283-291
  19. Pereira, V.A., I.N.Q. Arruda and R. Stefani. 2015. Active chitosan/PVA films with anthocyanins from Brassica oleraceae (red cabbage) as timetemperature indicators for application in intelligent food packaging. Food Hydrocolloids. 43: 180-188.
  20. Reyes, L.F. and L. Cisnerros-Zevallos. 2007. Degradation kinetics and colour of anthocyanins in aqueous extracts of purple and red-flesh potatoes
  21. (Solanum tuberosum L.). Food Chemistry 100:885-894
  22. Sakamoto, W., T. Kanehira, H. Hongou and K. Asano. 2015. Polyvinylalcohol stabilizes anthocyanins of red wine in the solid phase but not in the aqueous phase. Advances in Biological Chemistry 5 : 215-
  23. 223
  24. Sinela, A., N. Rawat, C. Mertz, N. Achir, H. Fulcrand and M. Dornier. 2017. Anthocyanins degradation during storage of Hibiscus sabdariffa extract
  25. and evolution of its degradation products. Food Chemistry 214: 234-241.
  26. Wahyuningsih, S., L. Wulandari, M.W. Wartono, H. Munawaroh and A.H Ramelan. 2017. The effect of pH and color stability of anthocyanin on food
  27. colorant. IOP Conf. Series: Material Science and Engineering 193 012047.
  28. Wu, D. and D.W. Sun. 2013. Food Color Measurement using computer vision. Di dalam Kilcast D, Editor. Instrumental Assesment of Food Sensory Quality.Oxford (GB): Woodhead Publishing. hlm 165-194.
  29. Wulandari NA. 2016. Kinetika perubahan warna pigmen alami dan potensinya sebagai label indikator proses termal. (skripsi). Departemen Ilmu dan Teknologi Pangan Institut Fakultas Teknologi Pertanian, IPB, Bogor.
  30. Yam, K.L. and S.E. Papadakis. 2004. A simple digital imaging method for measuring and analyzing color of food surfaces. Journal of Food Engineering. 61:137-142.
  31. Yang, Z., Y. Han, Z. Gu, G. Fan and Z. Chen. 2008. Thermal degradation kinetics of aqueous anthocyanins and visual color of purple corn
  32. (Zea mays L.) cob. Innovative Food Science and Emerging Technologies 9: 341-347
  33. Yoshida, C.M.P., V.B.V Maciel, M.E.D Mendonca, T.T Franco. 2014. Chitosan biobased and intelligent films : monitoring pH variations. Food Science and
  34. Technology. 55: 83-89.