Respon Beberapa Genotipe Kedelai Terhadap Tingkat Cekaman Kekeringan Tanah Ultisol

Response of Several Soybean Genotypes to Drought Stress Levels of Ultisols

Hapsoh1, Sudirman Yahya2, T.M.H. Oelim1, Didy Sapandie3

Diterima 16 Juni 2004/Disetujui 20 Desember 2004

ABSTRACT

This research was aimed to find out the tolerant and susceptible soybean genotypes to drought stress. Twenty two genotypes were tested on three levels of drought stress, based on soil moisture conditions : 80% of field capacity (FC), 60% FC and 40% FC. The experiment was conducted in plastic house at the experimental field of Meteorological Station, Sampali, Medan, from February to May 2000. The results show that increasing on the severity of drought caused significantly reduced growth and yields, which indicated by the reduction on shoot dry weight, stem diameter, filled pod number, seed number/plant and seed dry weight. The level of growth and yield reductions varied among genotypes. The highest variation was shown at the drought level of 60% FC. Sindoro and Lekon were selected as tolerant and susceptible genotypes, consecutively. It was concluded that the adaptation of tolerant plants strongly related to their ability to improve the root system and to reduce the transpiration surfaces.

Key words: Soybean, Drought, Tolerant, Susceptible.

PENDAHULUAN

BAHAN DAN METODE

Penelitian merupakan percobaan pot di rumah plastik Kebun Percobaan Stasion Klimatologi Sampel, Medan dari bulan Februari 2000 sampai dengan bulan Mei 2000. Percobaan menggunakan tanah Ultisol asal Kebun Percobaan USU Tamanan A, Langkat, Sumatera Utara. Tanah diambil secara komposit dari kedalaman 0 – 20 cm, dikeringgankan dan diayak dengan ayakan berdiameter ± 6 mm, kemudian ditimbang 5 kg berdasiakan bobot kering mutlak per pot. Penetapan kadar air tanah dengan metode pengeringan (oven), sedangkan penetapan kadar air
pada kapasitas lapang diakukan dengan metode Bonayacos.

Benih kedelai dari kelompok (1) varietas kedelai yang telah dieksperimen pada produktivitas tinggi penyebaran biasa; Wilis (G1), Nakon Sawon (G2), Panggang (G3), Lamajang Bewak (G4), Lokon (G5), Kerinci (G6), Jayawijaya (G7), Merapi (G8), Tidar (G9), Kipas Puth (G10) (2) Genotipe yang telah dievaluasi ketahuanannya terhadap cekaman kekerasan. Galur 1.51 B (introduksi dari Perancis) (G11). MLG 2805 (G11), MLG 2984 (G11) (Jusuf at el., 1993; Sopandi et al., 1996; Hamim et al., 1996) dan pana kekerasan; MLG 2510 (G12), MLG 3541 (G12) (Jusuf at el., 1993; Sopandi et al., 1996; Hamim et al., 1996) (3) Toleran Al/tanah masam; Strytton (G13), Malahar (G14), Yellow Biloxi (G15), Sindoro (G16), Slamet (G16) (Sopandi 1999; Sopandi et al., 2000; Sunarto, 2001.) Dua varietas terakhir selain toleran Al juga toleran kekerasan (Sunarto, 2001).

Percaobaan dilaksanakan secara Faktorial meng- gunakan Rancangan Acak Lengkap (RAL), dua faktor perlakuan dan tiga ulangan. Faktor pertama ialah genotipe kedelai (G) terdiri atas 20 genotipe kedelai (G1 - G20). Faktor kedua ialah tingkat cekaman kekerasan (C) menurut kadar air tanah terdiri atas C1 (80% kapasitas lapangan) (80% KL), C2 (60% KL) dan C3 (40% KL).

Sementara penanaman, tanah dalam pot percaobaan diberi pupuk dasar N, P, dan K yang jumlahnya berdasarkan analisis tanah percaobaan, yaitu sebanyak 4.71 g urea/pot (1/3 bagian), 1.06 g rock fosfa/pot, 2.96 g KCl/pot. Pada umur 4 minggu setelah tanam (MST) diberi lagi 9.42 g urea/pot (2/3 bagian). Tiap pot ditamani empat biji kedelai, pada umur 7 hari dilakukan penjarangan hingga tinggal dua tanaman dan pada umur dua minggu tinggal satu tanaman per pot, ditanggalkan tanaman yang paling baik pertumbuhannya.

Perlakuan cekaman kekerasan; perlakuan 80% KL diminum sejak waktu tanam sampai tanam berbunsa. Pada perlakuan 60% KL dan 40% KL, penambahan air 80% KL dilakukan masing-masing sampai 3 hari dan 6 hari sebelum berbunga (berdasarkan hasil percaobaan pendahuluan). Setelah itu, tanaman dalam pot disiram sesuai dengan perlu masing-masing hingga panen. Penyiraman selanjutnya dilakukan satu kali sehari. Penyiraman dilakukan dengan mengendalikan kadar air dalam pot hingga kembali mencapai masing-masing perlakuan % KL, dengan metode penimbangan.

Pengamatan pada saat panen meliputi panjang akar, bobot kering (BK) akar, BK tajuk dan diameter batang, jumlah polong berisi/tanaman, jumlah biji/tanaman dan BK biji/tanaman.

Genotipe dikategorikan sebagai toleran kekerasan adalah genotipe yang (mempunyai hasil tinggi) mengalami penurunan hasil paling kecil dibandingkan dengan pada 80% KL, sedangkan genotipe yang (mempunyai hasil tinggi) mengalami penurunan hasil paling besar dibandingkan dengan pada 80% KL adalah genotipe peka kekerasan.

HASIL DAN PEMBAHASAN

Karakteristik tanah ulosol yang digunakan kejenuhan Al sedang, kejenuhan bawah rendah dan kapasitas tukar kation rendah disajikan pada Tabel 1. Terdapat perbedaan tangan panjang akar terhadap cekaman kekerasan di antara genotipe yang dicobakan (Tabel 2). Cekaman kekerasan menyebabkan terjadi penurunan BK akar (Tabel 3), BK tajuk (Tabel 4) dan diameter batang (Tabel 5). Hal yang sama dikenalkan Jusuf at el. (1993); Hamim et al. (1996) dan Sopandi et al. (1997) bahwa cekaman kekerasan menyebabkan tanaman memendek, menekan perkembangan akar dan tajuk kedelai. Cekaman kekerasan menyebabkan berkurangnya, polong berisi (Tabel 6), jumlah biji/tanaman (Tabel 7) dan BK biji (Tabel 8). Cekaman kekerasan juga dilaporkan mengurangi jumlah polong berisi (Harnowo 1992; Sopandi et al., 1997), menurunkan jumlah biji/tanaman dan bobot per satuan biji (De Souza at el., 1997) dan meururunkan hasil biji kedelai (Harnowo 1992; Jusuf at el., 1993; Sopandi et al., 1997).
Tabel 1. Analisis tanah percoobaan

<table>
<thead>
<tr>
<th>No</th>
<th>Fraksi/ Urisur</th>
<th>Percoobaan 1</th>
<th>Kriteria BPP Medan</th>
<th>Kriteria LPT Bogor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pasir (%)</td>
<td>55.98</td>
<td>4.5-5.9 (rendah)</td>
<td>4.5-5.5 (rendah)</td>
</tr>
<tr>
<td>2</td>
<td>Debu (%)</td>
<td>15.7</td>
<td>2.1-3 (sedang)</td>
<td>1-2 (rendah)</td>
</tr>
<tr>
<td>3</td>
<td>Liat (%)</td>
<td>28.32</td>
<td>0.3 (sedang)</td>
<td>0.1-0.2 (rendah)</td>
</tr>
<tr>
<td>4</td>
<td>pH H₂O</td>
<td>5.03</td>
<td>8-12 (sedang)</td>
<td>11-15 (sedang)</td>
</tr>
<tr>
<td>5</td>
<td>C (%)</td>
<td>1.43</td>
<td><0.1 (rendah)</td>
<td>0.1-0.3 (rendah)</td>
</tr>
<tr>
<td>6</td>
<td>N (%)</td>
<td>0.17</td>
<td>2-5 (agak rendah)</td>
<td>2-5 (rendah)</td>
</tr>
<tr>
<td>7</td>
<td>C/N</td>
<td>8.41</td>
<td>20-40 (rendah)</td>
<td>11-20 (sedang)</td>
</tr>
<tr>
<td>8</td>
<td>P Bray 2 (ppm)</td>
<td>10</td>
<td>35 (sedang)</td>
<td>5-16 (rendah)</td>
</tr>
<tr>
<td>9</td>
<td>K - Tuktur (me/100 g)</td>
<td>0.44</td>
<td>1.0 (agak tinggi)</td>
<td>0.4-0.5 (sedang)</td>
</tr>
<tr>
<td>10</td>
<td>Na-Tukur (me/100g)</td>
<td>0.07</td>
<td><0.9 (rendah)</td>
<td>0.1-0.9 (rendah)</td>
</tr>
<tr>
<td>11</td>
<td>Ca - Tukur (me/100 g)</td>
<td>1.48</td>
<td>2-5 (agak rendah)</td>
<td>2-5 (rendah)</td>
</tr>
<tr>
<td>12</td>
<td>Mg - Tukur (me/100 g)</td>
<td>0.44</td>
<td>0.4-0.5 (sedang)</td>
<td>0.4-1 (rendah)</td>
</tr>
<tr>
<td>13</td>
<td>KTK (me/100 g)</td>
<td>6.82</td>
<td>13-25 (sedang)</td>
<td>5-16 (rendah)</td>
</tr>
<tr>
<td>14</td>
<td>Al dd (me/100 g)</td>
<td>0.46</td>
<td>20-40 (rendah)</td>
<td>11-20 (sedang)</td>
</tr>
<tr>
<td>15</td>
<td>Kejenuhan bosa (%)</td>
<td>35.63</td>
<td>21-40 (tinggi)</td>
<td>21-40 (tinggi)</td>
</tr>
<tr>
<td>16</td>
<td>Kejenuhan Al (%)</td>
<td>15.92</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan: Analisis di laboratorium sentral FPP USU Medan.

Tabel 2. Respon panjang akar saat panen beberapa genotipe kedelai terhadap cekaman kekeringan

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Cekaman kekeringan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80% KL</td>
</tr>
<tr>
<td></td>
<td>cm</td>
</tr>
<tr>
<td>Willis</td>
<td>38.33 cdefghijkl</td>
</tr>
<tr>
<td>Nakon Sawon</td>
<td>51.17 bdefgh</td>
</tr>
<tr>
<td>Pangrango</td>
<td>35.67 cdefghijkl</td>
</tr>
<tr>
<td>Lumajang Bewok</td>
<td>45.67 bcdefg hijhj</td>
</tr>
<tr>
<td>Lukon</td>
<td>45.67 bcdefghijh</td>
</tr>
<tr>
<td>Kerinci</td>
<td>48.33 bcdefghijh</td>
</tr>
<tr>
<td>Jaya Wujaya</td>
<td>52.33 bcdefg hijh</td>
</tr>
<tr>
<td>Merapi</td>
<td>44.67 cdefg hijh</td>
</tr>
<tr>
<td>Tidar</td>
<td>66.67 ab</td>
</tr>
<tr>
<td>Kipas Putih</td>
<td>45.33 cdefghijh</td>
</tr>
<tr>
<td>ISI B</td>
<td>47.67 bcdefghijh</td>
</tr>
<tr>
<td>MLG 2805</td>
<td>33.17 cdefghijkl</td>
</tr>
<tr>
<td>MLG 2984</td>
<td>55.33 bc</td>
</tr>
<tr>
<td>MLG 2510</td>
<td>54.33 bc</td>
</tr>
<tr>
<td>MLG 3541</td>
<td>54.00 bcde</td>
</tr>
<tr>
<td>Sindoro</td>
<td>34.67 cdefghijkl</td>
</tr>
<tr>
<td>Slamet</td>
<td>36.50 cdefghijkl</td>
</tr>
<tr>
<td>Srijoyo</td>
<td>45.33 cdefghijhj</td>
</tr>
<tr>
<td>Malabar</td>
<td>32.50 ghijkl</td>
</tr>
<tr>
<td>Yellow Biloxi</td>
<td>31.57 cdefghijh</td>
</tr>
</tbody>
</table>

Keterangan: Angka yang diikuti oleh huruf yang sama tidak berbeda nyata berdasarkan uji jarak berganda Duncan 5%. Angka dalam () ialah % penurunan atau peningkatan (bila diikuti +) terhadap kontrol (80% KL), keterangan ini berlaku untuk Tabel 2 s/d 8.
Tabel 3. Respon bobot kering akar saat panen beberapa genotipe kedelai terhadap cekaman kekeringan

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>80% KL</th>
<th>60% KL</th>
<th>40% KL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Willis</td>
<td>1.16</td>
<td>0.74 (35.73)</td>
<td>0.19</td>
</tr>
<tr>
<td>Nakon Sawon</td>
<td>1.03</td>
<td>0.37 (64.29)</td>
<td>0.19</td>
</tr>
<tr>
<td>Pangrango</td>
<td>1.65</td>
<td>0.81 (51.01)</td>
<td>0.24</td>
</tr>
<tr>
<td>Lumajang Bewok</td>
<td>1.03</td>
<td>0.54 (47.42)</td>
<td>0.15</td>
</tr>
<tr>
<td>Lokon</td>
<td>2.03</td>
<td>0.71 (65.08)</td>
<td>0.45</td>
</tr>
<tr>
<td>Kerinci</td>
<td>1.85</td>
<td>0.68 (63.09)</td>
<td>0.30</td>
</tr>
<tr>
<td>Jaya Wijaya</td>
<td>1.64</td>
<td>0.98 (40.37)</td>
<td>0.38</td>
</tr>
<tr>
<td>Merapi</td>
<td>0.86</td>
<td>0.48 (44.36)</td>
<td>0.18</td>
</tr>
<tr>
<td>Tidar</td>
<td>1.60</td>
<td>0.54 (66.39)</td>
<td>0.12</td>
</tr>
<tr>
<td>Kipas Putih</td>
<td>1.38</td>
<td>0.55 (60.24)</td>
<td>0.37</td>
</tr>
<tr>
<td>1.5.1 B</td>
<td>1.40</td>
<td>0.59 (57.72)</td>
<td>0.31</td>
</tr>
<tr>
<td>MLG 2805</td>
<td>0.96</td>
<td>0.24 (75.00)</td>
<td>0.21</td>
</tr>
<tr>
<td>MLG 2984</td>
<td>1.99</td>
<td>0.71 (64.43)</td>
<td>0.32</td>
</tr>
<tr>
<td>MLG 2510</td>
<td>2.49</td>
<td>0.49 (80.29)</td>
<td>0.22</td>
</tr>
<tr>
<td>MLG 3541</td>
<td>1.80</td>
<td>1.30 (27.96)</td>
<td>0.34</td>
</tr>
<tr>
<td>Sindoro</td>
<td>1.01</td>
<td>0.61 (39.80)</td>
<td>0.32</td>
</tr>
<tr>
<td>Slanet</td>
<td>0.96</td>
<td>0.29 (69.90)</td>
<td>0.19</td>
</tr>
<tr>
<td>Srijono</td>
<td>1.26</td>
<td>0.81 (35.54)</td>
<td>0.34</td>
</tr>
<tr>
<td>Malabar</td>
<td>0.49</td>
<td>0.32 (34.25)</td>
<td>0.12</td>
</tr>
<tr>
<td>Yellow Bilexi</td>
<td>1.67</td>
<td>0.81 (51.60)</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Keterangan: Angka yang diikuti oleh huruf yang sama tidak berbeda nyata berdasarkan uji jarak berganda Duncan 5%.

Tabel 4. Respon bobot kering tajuk saat panen beberapa genotipe kedelai terhadap cekaman kekeringan

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>80% KL</th>
<th>60% KL</th>
<th>40% KL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Willis</td>
<td>2.04</td>
<td>1.00 (50.74)</td>
<td>0.26</td>
</tr>
<tr>
<td>Nakon Sawon</td>
<td>0.82</td>
<td>0.58 (29.39)</td>
<td>0.39</td>
</tr>
<tr>
<td>Pangrango</td>
<td>2.75</td>
<td>0.96 (65.05)</td>
<td>0.23</td>
</tr>
<tr>
<td>Lumajang Bewok</td>
<td>2.20</td>
<td>0.90 (58.94)</td>
<td>0.27</td>
</tr>
<tr>
<td>Lokon</td>
<td>3.90</td>
<td>0.98 (74.81)</td>
<td>0.50</td>
</tr>
<tr>
<td>Kerinci</td>
<td>3.93</td>
<td>0.75 (81.00)</td>
<td>0.29</td>
</tr>
<tr>
<td>Jaya Wijaya</td>
<td>3.74</td>
<td>1.45 (61.23)</td>
<td>0.43</td>
</tr>
<tr>
<td>Merapi</td>
<td>1.60</td>
<td>0.68 (57.41)</td>
<td>0.27</td>
</tr>
<tr>
<td>Tidar</td>
<td>2.68</td>
<td>0.81 (68.96)</td>
<td>0.29</td>
</tr>
<tr>
<td>Kipas Putih</td>
<td>2.58</td>
<td>0.81 (68.43)</td>
<td>0.45</td>
</tr>
<tr>
<td>f.5.1 B</td>
<td>1.60h</td>
<td>0.88 (44.79)</td>
<td>0.30</td>
</tr>
<tr>
<td>MLG 2805</td>
<td>2.04</td>
<td>0.42 (79.61)</td>
<td>0.27</td>
</tr>
<tr>
<td>MLG 2984</td>
<td>2.95</td>
<td>0.95 (67.68)</td>
<td>0.29</td>
</tr>
<tr>
<td>MLG 2510</td>
<td>3.43</td>
<td>1.04 (59.81)</td>
<td>0.30</td>
</tr>
<tr>
<td>MLG 3541</td>
<td>4.01</td>
<td>1.40 (65.17)</td>
<td>0.38</td>
</tr>
<tr>
<td>Sindoro</td>
<td>1.76</td>
<td>1.30 (28.26)</td>
<td>0.34</td>
</tr>
<tr>
<td>Slanet</td>
<td>2.52</td>
<td>0.42 (83.20)</td>
<td>0.29</td>
</tr>
<tr>
<td>Srijono</td>
<td>3.05</td>
<td>0.85 (32.02)</td>
<td>0.30</td>
</tr>
<tr>
<td>Malabar</td>
<td>0.72</td>
<td>0.49 (31.48)</td>
<td>0.26</td>
</tr>
<tr>
<td>Yellow Bilexi</td>
<td>3.68</td>
<td>0.90 (75.61)</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Keterangan: Tidak diberi notasi beda, karena mengikuti uji Kruskal-Wallis.
Tabel 5. Respon diameter batang saat panen beberapa genotipe kedelai terhadap cekaman kekeringan

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>80% KL</th>
<th>60% KL</th>
<th>40% KL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>Willis</td>
<td>4.30</td>
<td>3.12</td>
<td>2.05</td>
</tr>
<tr>
<td>Nakon Sawon</td>
<td>2.63</td>
<td>2.47</td>
<td>2.51</td>
</tr>
<tr>
<td>Pangrango</td>
<td>5.10</td>
<td>3.06</td>
<td>2.02</td>
</tr>
<tr>
<td>Lumajang Bewok</td>
<td>3.67</td>
<td>2.15</td>
<td>1.99</td>
</tr>
<tr>
<td>Lokon</td>
<td>5.03</td>
<td>2.95</td>
<td>2.22</td>
</tr>
<tr>
<td>Kerincii</td>
<td>5.43</td>
<td>4.07</td>
<td>2.05</td>
</tr>
<tr>
<td>Jaya Wijaya</td>
<td>5.40</td>
<td>3.28</td>
<td>2.40</td>
</tr>
<tr>
<td>Merupu</td>
<td>3.63</td>
<td>2.75</td>
<td>1.85</td>
</tr>
<tr>
<td>Tidar</td>
<td>4.17</td>
<td>2.73</td>
<td>1.85</td>
</tr>
<tr>
<td>Kipas Putih</td>
<td>4.03</td>
<td>2.63</td>
<td>2.17</td>
</tr>
<tr>
<td>L.S.I. B</td>
<td>3.37</td>
<td>2.70</td>
<td>1.87</td>
</tr>
<tr>
<td>MLG 2805</td>
<td>3.93</td>
<td>2.60</td>
<td>2.25</td>
</tr>
<tr>
<td>MLG 2984</td>
<td>4.37</td>
<td>2.57</td>
<td>2.05</td>
</tr>
<tr>
<td>MLG 2510</td>
<td>4.92</td>
<td>2.90</td>
<td>2.02</td>
</tr>
<tr>
<td>MLG 3541</td>
<td>5.47</td>
<td>3.38</td>
<td>2.33</td>
</tr>
<tr>
<td>Sindoro</td>
<td>4.13</td>
<td>3.23</td>
<td>2.40</td>
</tr>
<tr>
<td>Slamet</td>
<td>4.33</td>
<td>2.32</td>
<td>2.07</td>
</tr>
<tr>
<td>Sriyono</td>
<td>4.73</td>
<td>2.83</td>
<td>2.03</td>
</tr>
<tr>
<td>Malabar</td>
<td>2.78</td>
<td>2.46</td>
<td>2.45</td>
</tr>
<tr>
<td>Yellow Biloxi</td>
<td>4.87</td>
<td>2.85</td>
<td>2.47</td>
</tr>
</tbody>
</table>

Keterangan: Tidak diberi notasi beda, karena mengikuti uji Kruskal-Wallis.

Tabel 6. Respon jumlah polong berisi beberapa genotipe kedelai terhadap cekaman kekeringan

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>80% KL</th>
<th>60% KL</th>
<th>40% KL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>buah</td>
<td>buah</td>
<td>buah</td>
</tr>
<tr>
<td>Willis</td>
<td>39.0abcde</td>
<td>16.7efgh (57.2)</td>
<td>1.0n</td>
</tr>
<tr>
<td>Nakon Sawon</td>
<td>47.7abc</td>
<td>12.0hij (74.8)</td>
<td>1.3mm</td>
</tr>
<tr>
<td>Pangrango</td>
<td>46.3a</td>
<td>18.3defgh (60.5)</td>
<td>2.3mm</td>
</tr>
<tr>
<td>Lumajang Bewok</td>
<td>54.0a</td>
<td>6.3cde (88.3)</td>
<td>2.7mm</td>
</tr>
<tr>
<td>Lokon</td>
<td>55.3abc</td>
<td>15.7defg (71.6)</td>
<td>2.0mm</td>
</tr>
<tr>
<td>Kerincii</td>
<td>68.3abcde</td>
<td>19.0ijkl (72.2)</td>
<td>1.3mm</td>
</tr>
<tr>
<td>Jaya Wijaya</td>
<td>62.7abc</td>
<td>22.0efgh (64.9)</td>
<td>1.7n</td>
</tr>
<tr>
<td>Merapi</td>
<td>48.3defgh</td>
<td>22.7hij (53.0)</td>
<td>1.3mm</td>
</tr>
<tr>
<td>Tidar</td>
<td>34.3a</td>
<td>5.3ghij (84.5)</td>
<td>1.3kln</td>
</tr>
<tr>
<td>Kipas Putih</td>
<td>50.3ghij</td>
<td>13.7ijk (72.8)</td>
<td>1.0n</td>
</tr>
<tr>
<td>L.S.I. B</td>
<td>16.3a</td>
<td>7.7efgh (52.8)</td>
<td>2.0mm</td>
</tr>
<tr>
<td>MLG 2805</td>
<td>8.3abcd</td>
<td>5.7ghij (31.3)</td>
<td>2.0kln</td>
</tr>
<tr>
<td>MLG 2984</td>
<td>60.0a</td>
<td>8.3ghij (86.2)</td>
<td>2.3mm</td>
</tr>
<tr>
<td>MLG 2510</td>
<td>67.0a</td>
<td>12.7ghij (81.0)</td>
<td>1.3kln</td>
</tr>
<tr>
<td>MLG 3541</td>
<td>34.7a</td>
<td>12.7bcdef (63.4)</td>
<td>2.3mm</td>
</tr>
<tr>
<td>Sindoro</td>
<td>78.3a</td>
<td>9.0defg (88.5)</td>
<td>1.3mm</td>
</tr>
<tr>
<td>Slamet</td>
<td>73.3a</td>
<td>9.3defg (87.3)</td>
<td>1.3mm</td>
</tr>
<tr>
<td>Sriyono</td>
<td>75.7abc</td>
<td>28.0efgh (63.0)</td>
<td>2.0mm</td>
</tr>
<tr>
<td>Malabar</td>
<td>48.0abc</td>
<td>20.0defg (58.3)</td>
<td>2.7kln</td>
</tr>
<tr>
<td>Yellow Biloxi</td>
<td>65.0a</td>
<td>17.0efgh (73.8)</td>
<td>1.3mm</td>
</tr>
</tbody>
</table>

Keterangan: Angka yang diikuti oleh huruf yang sama tidak berbeda nyata berdasarkan uji jarak berganda Duncan 5%.
Tabel 7. Respon jumlah biji/tanaman beberapa genotipe kedelai terhadap cekaman kekeringan

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Cekaman kekeringan 80% KL</th>
<th>Cekaman kekeringan 60% KL</th>
<th>Cekaman kekeringan 40% KL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>butir</td>
<td>butir</td>
<td>butir</td>
</tr>
<tr>
<td>Willis</td>
<td>96.7 def</td>
<td>91.3 def</td>
<td>87.0 def</td>
</tr>
<tr>
<td>Nakon Sawon</td>
<td>18.3 kl mno</td>
<td>16.0 kl mno</td>
<td>13.0 kl mno</td>
</tr>
<tr>
<td>Pangrange</td>
<td>13.1 ab</td>
<td>24.0 jm no</td>
<td>27.0 ab</td>
</tr>
<tr>
<td>Lumajang Bewok</td>
<td>62.0 gh</td>
<td>24.7 jm no</td>
<td>27.0 gh</td>
</tr>
<tr>
<td>Loko</td>
<td>15.1 ja</td>
<td>20.7 jm no</td>
<td>30.0 jk mno</td>
</tr>
<tr>
<td>Kerinci</td>
<td>13.0 ab</td>
<td>21.3 jm no</td>
<td>23.0 ab</td>
</tr>
<tr>
<td>Jaya Wijaya</td>
<td>13.4 ab</td>
<td>51.3 hj (61.7)</td>
<td>2.3 o</td>
</tr>
<tr>
<td>Merapi</td>
<td>92.3 ef</td>
<td>29.7 jm no</td>
<td>4.3 no</td>
</tr>
<tr>
<td>Tidur</td>
<td>13.5 ab</td>
<td>30.3 jm no</td>
<td>2.3 o</td>
</tr>
<tr>
<td>Kipas Putih</td>
<td>92.3 ef</td>
<td>23.3 jm no</td>
<td>1.7 o</td>
</tr>
<tr>
<td>I.S.I B</td>
<td>75.3 fg</td>
<td>30.3 jm no</td>
<td>2.7 o</td>
</tr>
<tr>
<td>MLG 2805</td>
<td>107.3 cde</td>
<td>10.7 jm no</td>
<td>5.6 no</td>
</tr>
<tr>
<td>MLG 2984</td>
<td>104.7 cde</td>
<td>29.0 jm no</td>
<td>3.7 no</td>
</tr>
<tr>
<td>MLG 2510</td>
<td>129.3 ab</td>
<td>36.3 hj (71.9)</td>
<td>2.3 o</td>
</tr>
<tr>
<td>MLG 3541</td>
<td>132.3 ab</td>
<td>42.3 hj (68.0)</td>
<td>3.0 no</td>
</tr>
<tr>
<td>Sindoro</td>
<td>88.3 ef</td>
<td>38.7 hj (56.2)</td>
<td>2.6 o</td>
</tr>
<tr>
<td>Slamet</td>
<td>87.0 ef</td>
<td>10.0 jm no</td>
<td>2.3 o</td>
</tr>
<tr>
<td>Sariyono</td>
<td>124.0 bc</td>
<td>25.0 jm no (79.8)</td>
<td>1.7 o</td>
</tr>
<tr>
<td>Malabur</td>
<td>26.3 jk lmn</td>
<td>15.0 jm no (43.0)</td>
<td>3.7 no</td>
</tr>
<tr>
<td>Yellow Biloxi</td>
<td>116.7 bcdef</td>
<td>17.3 kln o (85.1)</td>
<td>3.7 no</td>
</tr>
</tbody>
</table>

Keterangan : Angka yang diikuti oleh huruf yang sama tidak berbeda nyata berdasarkan uji jarak berganda Duncan 5 %.

Tabel 8. Respon bobot kering biji beberapa genotipe kedelai terhadap cekaman kekeringan

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Cekaman kekeringan 80% KL</th>
<th>Cekaman kekeringan 60% KL</th>
<th>Cekaman kekeringan 40% KL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g</td>
<td>g</td>
<td>g</td>
</tr>
<tr>
<td>Willis</td>
<td>9.65</td>
<td>3.71 (61.57)</td>
<td>0.10</td>
</tr>
<tr>
<td>Nakon Sawon</td>
<td>5.51</td>
<td>1.96 (44.12)</td>
<td>0.41</td>
</tr>
<tr>
<td>Pangrange</td>
<td>12.90</td>
<td>3.16 (75.51)</td>
<td>0.22</td>
</tr>
<tr>
<td>Lumajang Bewok</td>
<td>6.50</td>
<td>2.52 (61.20)</td>
<td>0.19</td>
</tr>
<tr>
<td>Loko</td>
<td>12.55</td>
<td>2.34 (82.73)</td>
<td>0.18</td>
</tr>
<tr>
<td>Kerinci</td>
<td>12.09</td>
<td>2.17 (8206)</td>
<td>0.21</td>
</tr>
<tr>
<td>Jaya Wijaya</td>
<td>10.62</td>
<td>4.37 (58.88)</td>
<td>0.15</td>
</tr>
<tr>
<td>Merapi</td>
<td>9.41</td>
<td>3.27 (65.27)</td>
<td>0.27</td>
</tr>
<tr>
<td>Tidur</td>
<td>11.16</td>
<td>2.73 (75.57)</td>
<td>0.12</td>
</tr>
<tr>
<td>Kipas Putih</td>
<td>10.83</td>
<td>3.74 (74.69)</td>
<td>0.16</td>
</tr>
<tr>
<td>I.S.I B</td>
<td>9.58</td>
<td>3.90 (59.75)</td>
<td>0.24</td>
</tr>
<tr>
<td>MLG 2805</td>
<td>8.95</td>
<td>0.88 (90.17)</td>
<td>0.37</td>
</tr>
<tr>
<td>MLG 2984</td>
<td>11.39</td>
<td>3.39 (70.20)</td>
<td>0.29</td>
</tr>
<tr>
<td>MLG 2510</td>
<td>10.94</td>
<td>3.65 (66.50)</td>
<td>0.12</td>
</tr>
<tr>
<td>MLG 3541</td>
<td>13.41</td>
<td>5.27 (60.72)</td>
<td>0.27</td>
</tr>
<tr>
<td>Sindoro</td>
<td>9.81</td>
<td>4.74 (51.67)</td>
<td>0.21</td>
</tr>
<tr>
<td>Slamet</td>
<td>10.55</td>
<td>1.15 (89.06)</td>
<td>0.17</td>
</tr>
<tr>
<td>Sariyono</td>
<td>10.09</td>
<td>2.74 (72.82)</td>
<td>0.15</td>
</tr>
<tr>
<td>Malabur</td>
<td>10.66</td>
<td>2.07 (43.59)</td>
<td>0.33</td>
</tr>
<tr>
<td>Yellow Biloxi</td>
<td>10.85</td>
<td>1.88 (82.67)</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Keterangan : Tidak diberi notasi beda, karena mengikuti uji Kruskal-Wallis.
Tabel 8 menunjukkan hasil biji kering pada cekaman 40% KL terlalu ekstrim, maka penentuan genotipe toleran dan peka kekeringan ditetapkan pada cekaman 60% KL. Selain itu keragaman yang tinggi terjadi pada cekaman kekeringan 60% KL.

Hasil penelitian menunjukkan terjadi pergerakan tingkat toleransi pada genotipe MLG 2805, Slamet dan MLG 2989. Ketiga genotipe ini semula tergolong toleran kekeringan, tetapi pada penelitian ini tergolong peka kekeringan. Hal ini diduga disebabkan kondisi tanah ultisol dengan kejenuhan Al sedang, kejenuhan basa rendah dan kapasitas tukar kation rendah (Tabel 1), sehingga tidak mendukung pertumbuhan maksimum. Meskipun cekaman kekeringan menyebabkan panjang akar (Tabel 2) meningkat pada genotipe MLG 2805 dan Slamet kecuali genotipe MLG 2989, BK akar (Tabel 3), BK tajuk (Tabel 4) dan diameter batang (Tabel 5) berkurang. Genotipe MLG 2510 dan MLG 3541 konsisten peka terhadap cekaman kekeringan, ditunjukkan oleh penurunan hasil biji sebesar 66,50% dan 60.72% (Tabel 8). Genotipe yang konsisten toleran terhadap cekaman kekeringan adalah 1.5.1 B dan Sindoro.

Genotipe Sindoro, Jaya Wijaya dan 1.5.1 B termasuk genotipe yang mengalami penurunan hasil lebih kecil dibandingkan dengan genotipe lainnya (Tabel 8). Namun demikian genotipe Sindoro mempunyai hasil biji tinggi pada kondisi cekaman kekeringan 60% KL yaitu sebesar 4,74 g/tanaman dan mengalami penurunan hasil biji terendah yaitu 51.67%. Dengan demikian genotipe Sindoro terpilih sebagai genotipe toleran terhadap cekaman kekeringan. Perbedaan hasil antar genotipe tersebut ditentukan oleh terdapatnya perbedaan nilai komponen hasil yang meruncut hasil biji kering. Pada genotipe Sindoro, komponen hasil yang lebih menentukan ialah jumlah cabang produktif, polong hampa dan jumlah biji/tanaman. Pada genotipe Sindoro terjadi peningkatan panjang akar (Tabel 2), penurunan BK tajuk (Tabel 4) dan diameter batang (Tabel 5). Hal ini merupakan tingkat tanaman yang beradaptasi terhadap cekaman kekeringan. Mekanisme adaptasi dengan meningkatkan sistem perakaran, dengan cara menghambat pertumbuhan bagian atas karena sebagian besar karbohidrat ditranslokasikan untuk memproduksi akar lebih banyak. Mengacu pada Jones et al. (1981) mekanisme seperti ini dikenal sebagai mekanisme penghinderan. Mekanisme ini juga terjadi pada genotipe Merapi. Genotipe lainnya tidak konsisten dan sebagian besar melakukan mekanisme penghinderan yaitu menekan kehilangan air dengan mengurangi transpirasi melalui pengecilan diameter batang (Tabel 5) dan ukuran tajuk (Tabel 4).

KESIMPULAN

1. Semakin berat cekaman kekeringan semakin tertekan pertumbuhan dan hasil yang ditunjukkan oleh BK tajuk, diameter batang, jumlah cabang produktif, jumlah polong berisi, jumlah biji/tanaman, dan BK biji. Tingkat penekanan beragam di antara genotipe yang dicoba. Keragaman yang tinggi terjadi pada tingkat cekaman kekeringan 60% KL.
2. Di antara genotipe toleran kekeringan terpilih genotipe Sindoro dan genotipe peka kekeringan terpilih genotipe Loken.
3. Adapasti tanaman terhadap cekaman kekeringan menggunakan mekanisme penghinderan ditunjukkan oleh menurunnya permukaan transpirasi (bohong tajuk dan diameter batang) dan meningkatnya kemampuan menyerap air (sistem perakaran).

DAFTAR PUSTAKA

