Nutrient Content, Protein Fractionation, and Utilization of Some Beans as Potential Alternatives to Soybean for Ruminant Feeding

A. Jayanegara, S. P. Dewi, M. Ridla

Abstract


This experiment aimed to determine nutrient content, protein fraction, and in vitro rumen fermentation of some alternative beans in comparison to soybean. Samples used were napier grass, soybean, redbean, groundnut, pigeonpea, cowpea, bambarabean, and mungbean. Samples were determined for their proximate composition, Van Soest’s fiber fraction, and Cornell protein fraction. The samples were subsequently evaluated for their fermentation characteristics and digestibility by using a two-stage in vitro rumen fermentation technique, maintained at 39 oC for 2 × 48 h. The in vitro incubation was performed in three consecutive runs by following a randomized complete block design in which each sample per run was represented by four fermentation tubes. Results revealed that all experimental beans contained high crude protein (CP), i.e. above 200 g/kg dry matter (DM), but only soybean and groundnut had CP contents higher than 300 g/kg DM. Redbean had the lowest crude fiber and acid detergent fiber contents among the beans. Soybean contained high proportion of rapidly degraded CP fraction, but low in slowly degraded and unavailable CP fractions. High proportion of slowly degraded CP fraction was found in redbean and bambarabean. Redbean, pigeonpea, cowpea, and mungbean were better than soybean, groundnut, and bambarabean with regard to DM degradability and DM digestibility values (P<0.05). Concentration of total VFA was the highest in the incubation of redbean. It was concluded that groundnut, redbean, pigeonpea, cowpea, and mungbean have the potency to be used to substitute soybean for ruminant feeding.

Keywords


bean; alternative feed; protein fraction; ruminant; rumen

Full Text:

PDF

References


Akbarian, A., M. Khorvash, G. R. Ghorbani, E. Ghasemi, M. Dehghan-Banadaky, P. Shawrang, & M. H. Ghaffari. 2014. Effects of roasting and electron beam irradiating on protein characteristics, ruminal degradability and intestinal digestibility of soybean and the performance of dairy cows. Livest. Sci. 168:45-52. http://dx.doi.org/10.1016/j.livsci.2014.07.019

Akhsan, F., L. K. Nuswantara, & J. Achmadi. 2015. Combination of soybean meal and Hibiscus tiliaceus leaf in the goat diet: effect on some parameters of protein metabolism. J. Indonesian Trop. Anim. Agric. 40:100-106.

http://dx.doi.org/10.14710/jitaa.40.2.100-106

Alemu, A. W., J. Dijkstra, A. Bannink, J. France, & E. Kebreab. 2011. Rumen stoichiometric models and their contribution and challenges in predicting enteric methane production. Anim. Feed Sci. Technol. 166-167:761-778.

http://dx.doi.org/10.1016/j.anifeedsci.2011.04.054

Aluwong, T., P. I. Kobo, & A. Abdullahi. 2010. Volatile fatty acids production in ruminants and the role of monocarboxylate transporters: a review. African J. Biotechnol. 9:6229-6232.

AOAC. 2005. Official Methods of Analysis. 18th Edition. AOAC International, Arlington, VA, USA.

Bannink, A., J. Kogut, J. Dijkstra, J. France, E. Kebreab, A. M. Van Vuuren, & S. Tamminga. 2006. Estimation of the stoichiometry of volatile fatty acid production in the rumen of lactating cows. J. Theor. Biol. 238:36-51.

http://dx.doi.org/10.1016/j.jtbi.2005.05.026

Bartley, E. E., A. D. Davidovich, G. W. Barr, G. W. Griffel, A. D. Dayton, C. W. Deyoe, & R. M. Bechtle. 1976. Ammonia toxicity in cattle. I. Rumen and blood changes associated with toxicity and treatment methods. J. Anim. Sci. 43:835-841. http://dx.doi.org/10.2527/jas1976.434835x

Bergman, E. N. 1990. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70:567-590.

Buccioni, A., M. Decandia, S. Minieri, G. Molle, & A. Cabiddu. 2012. Lipid metabolism in the rumen: new insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Anim. Feed Sci. Technol. 174:1-25. http://dx.doi.org/10.1016/j.anifeedsci.2012.02.009

Campos, A. F., O. G. Pereira, K. G. Ribeiro, S. A. Santos, & S. D. C. Valadares Filho. 2014. Impact of replacing soybean meal in beef cattle diets with inactive dry yeast, a sugarcane by-product of ethanol distilleries and sugar mills. Anim. Feed Sci. Technol. 190:38-46. http://dx.doi.org/10.1016/j.anifeedsci.2014.01.003

De Campeneere, S., J. L. De Boever, J. M. Vanacker, & D. L. De Brabander. 2010. Reducing nitrogen excretion and soybean meal use by feeding a lower rumen degradable protein balance and protected soybean meal to dairy cattle. Arch. Anim. Nutr. 64:85-97. http://dx.doi.org/10.1080/17450391003625011

FAO (Food and Agriculture Organization of the United Nations). 2016. Feedipedia: Animal Feed Resources Information System. http://www.feedipedia.org/ [20 June 2016].

Faradillah, F., R. Mutia, & L. Abdullah. 2015. Substitution of soybean meal with Indigofera zollingeriana top leaf meal on egg quality of Coturnix coturnix japonica. Med. Pet. 38:192-197. http://dx.doi.org/10.5398/medpet.2015.38.3.192

Fievez, V., E. Colman, J. M. Castro-Montoya, I. Stevanov, & B. Vlaeminck. 2012. Milk odd- and branched-chain fatty acids as biomarkers of rumen function-an update. Anim. Feed Sci. Technol. 172:51-65. http://dx.doi.org/10.1016/j.anifeedsci.2011.12.008

Goh, C. H., A. B. Nicotra, & U. Mathesius. 2016. The presence of nodules on legume root systems can alter phenotypic plasticity in response to internal nitrogen independent of nitrogen fixation. Plant Cell Environ. 39:883-896.

http://dx.doi.org/10.1111/pce.12672

Haliza, W., E. Y. Purwani, & R. Thahir. 2007. Pemanfaatan kacang-kacangan lokal sebagai substitusi bahan baku tempe dan tahu. Buletin Teknologi Pascapanen Pertanian 3:1-8.

Haliza, W., E. Y. Purwani, & R. Thahir. 2010. Pemanfaatan kacang-kacangan lokal mendukung diversifikasi pangan. Pengembangan Inovasi Pertanian 3:238-245.

Hao, X. Y., X. Han, H. Ju, & E. D. Lin. 2010. Impact of climatic change on soybean production: a review. Chinese J. Appl. Ecol. 21:2697-2706.

Higgs, R. J., L. E. Chase, & M. E. Van Amburgh. 2012. Development and evaluation of equations in the Cornell Net Carbohydrate and Protein System to predict nitrogen excretion in lactating dairy cows. J. Dairy Sci. 95:2004-2014.

http://dx.doi.org/10.3168/jds.2011-4810

Holder, V. B., S. W. El-Kadi, J. M. Tricarico, E. S. Vanzant, K. R. McLeod, & D. L. Harmon. 2013. The effects of crude protein concentration and slow release urea on nitrogen metabolism in Holstein steers. Arch. Anim. Nutr. 67:93-103.

http://dx.doi.org/10.1080/1745039X.2013.773647

Jayanegara, A., M. Kreuzer, & F. Leiber. 2012. Ruminal disappearance of polyunsaturated fatty acids and appearance of biohydrogenation products when incubating linseed oil with alpine forage plant species in vitro. Livest. Sci. 147:104-112. http://dx.doi.org/10.1016/j.livsci.2012.04.009

Jayanegara, A., S. Marquardt, E. Wina, M. Kreuzer, & F. Leiber. 2013. In vitro indications for favourable non-additive effects on ruminal methane mitigation between high-phenolic and high-quality forages. Br. J. Nutr. 109:615-622.

http://dx.doi.org/10.1017/S0007114512001742

Jayanegara, A., E. Wina, & J. Takahashi. 2014. Meta-analysis on methane mitigating properties of saponin-rich sources in the rumen: influence of addition levels and plant sources. Asian Australas. J. Anim. Sci. 27:1426-1435.

http://dx.doi.org/10.5713/ajas.2014.14086

Jayanegara, A., G. Goel, H. P. S. Makkar, & K. Becker. 2015. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim. Feed Sci. Technol. 209:60-68. http://dx.doi.org/10.1016/j.anifeedsci.2015.08.002

Jayanegara, A., S. P. Dewi, N. Laylli, E. B. Laconi, Nahrowi, & M. Ridla. 2016. Determination of cell wall protein from selected feedstuffs and its relationship with ruminal protein digestibility in vitro. Med. Pet. 39:134-140.

http://dx.doi.org/10.5398/medpet.2016.39.2.134

Jolazadeh, A. R., M. Dehghan-Banadaky, & K. Rezayazdi. 2015. Effects of soybean meal treated with tannins extracted from pistachio hulls on performance, ruminal fermentation, blood metabolites and nutrient digestion of Holstein bulls. Anim. Feed Sci. Technol. 203:33-40. http://dx.doi.org/10.1016/j.anifeedsci.2015.02.005

Laconi, E. B., & A. Jayanegara. 2015. Improving nutritional quality of cocoa pod (Theobroma cacao) through chemical and biological treatments for ruminant feeding: in vitro and in vivo evaluation. Asian Australas. J. Anim. Sci. 28:343-350. http://dx.doi.org/10.5713/ajas.13.0798

Licitra, G., T. M. Hernandez, & P. J. Van Soest. 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 57:347-358. http://dx.doi.org/10.1016/0377-8401(95)00837-3

Liu, Y., N. W. Jaworski, O. J. Rojas, & H. H. Stein. 2016. Energy concentration and amino acid digestibility in high protein canola meal, conventional canola meal, and in soybean meal fed to growing pigs. Anim. Feed Sci. Technol. 212:52-62.

http://dx.doi.org/10.1016/j.anifeedsci.2015.11.017

Mahima, V. Kumar, S. K. Tomar, D. Roy, & M. Kumar. 2015. Effect of varying levels of formaldehyde treatment of mustard oil cake on rumen fermentation, digestibility in wheat straw based total mixed diets in vitro. Vet. World 8:551-555. http://dx.doi.org/10.14202/vetworld.2015.551-555

Marghazani, I. B., M. A. Jabbar, T. N. Pasha, & M. Abdullah. 2012. Effect of supplementation with protein differ for rumen degradability on milk production and nutrients utilization in early lactating Sahiwal cows. Ital. J. Anim. Sci. 11:58-62. http://dx.doi.org/10.4081/ijas.2012.e11

Maxin, G., D. R. Ouellet, & H. Lapierre. 2013. Ruminal degradability of dry matter, crude protein, and amino acids in soybean meal, canola meal, corn, and wheat dried distillers grains. J. Dairy Sci. 96:5151-5160. http://dx.doi.org/10.3168/jds.2012-6392

Noziere, P., F. Glasser, & D. Sauvant. 2011. In vivo production and molar percentages of volatile fatty acids in the rumen: a quantitative review by an empirical approach. Animal 5:403-414. http://dx.doi.org/10.1017/S1751731110002016

Pelletier, S., G. F. Tremblay, A. Bertrand, G. Belanger, Y. Castonguay, & R. Michaud. 2010. Drying procedures affect non-structural carbohydrates and other nutritive value attributes in forage samples. Anim. Feed Sci. Technol. 157:139-150. http://dx.doi.org/10.1016/j.anifeedsci.2010.02.010

Rouches, E., I. Herpoel-Gimbert, J. P. Steyer, & H. Carrere. 2016. Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: a review. Renew. Sustanable Energy Rev. 59:179-198. http://dx.doi.org/10.1016/j.rser.2015.12.317

Scharen, M., G. M. Seyfang, H. Steingass, K. Dieho, J. Dijkstra, L. Huther, J. Frahm, A. Beineke, D. Van Soosten, U. Meyer, G. Breves, & S. Danicke. 2016. The effects of a ration change from a total mixed ration to pasture on rumen fermentation, volatile fatty acid absorption characteristics, and morphology of dairy cows. J. Dairy Sci. 99:3549-3565. http://dx.doi.org/10.3168/jds.2015-10450

Seo, J. K., M. H. Kim, J. Y. Yang, H. J. Kim, C. H. Lee, K. H. Kim, & J. K. Ha. 2013. Effects of synchronicity of carbohydrate and protein degradation on rumen fermentation characteristics and microbial protein synthesis. Asian Australas. J. Anim. Sci. 26:358-365. http://dx.doi.org/10.5713/ajas.2012.12507

Sniffen, C. J., J. D. O’Connor, P. J. Van Soest, D. G. Fox, & J. B. Russel. 1992. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 70:3562-3577. http://dx.doi.org/10.2527/1992.70113562x

Tilley, J. M. A., & R. A. Terry. 1963. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 18:104-111. http://dx.doi.org/10.1111/j.1365-2494.1963.tb00335.x

Van Soest, P. J., J. B. Robertson, & B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. http://dx.doi.org/10.3168/jds.S0022-0302(91)78551-2

Vollmann, J. 2016. Soybean versus other food grain legumes: a critical appraisal of the United Nations International Year of Pulses 2016. Bodenkultur 67:17-24.

http://dx.doi.org/10.1515/boku-2016-0002

Wang, C., J. X. Liu, S. W. Zhai, J. L. Lai, & Y. M. Wu. 2008. Effects of rumen degradable protein to rumen undegradable protein ratio on nitrogen conversion of lactating dairy cows. Acta Agric. Scand. A 58:100-103.

http://dx.doi.org/10.1080/09064700802187210

Yang, J. Y., J. Seo, H. J. Kim, S. Seo, & J. K. Ha. 2010. Nutrient synchrony: is it a suitable strategy to improve nitrogen utilization and animal performance? Asian Australas. J. Anim. Sci. 23:972-979. http://dx.doi.org/10.5713/ajas.2010.r.04

Yildiz, E. & N. Todorov. 2014. The comparison of the main protein sources for dairy cows: a review. Bulgarian J. Agric. Sci. 20:428-446.




DOI: http://dx.doi.org/10.5398/medpet.2016.39.3.195

Copyright (c) 2016 Media Peternakan

 

Editorial Office

Media Peternakan, Journal of Animal Science and Technology

Faculty of Animal Science Building, Bogor Agricultural University
Jln Agatis, Kampus IPB Darmaga, Bogor 16680, Indonesia
Phone/Fax.: +62-251-8421692
e-mail: mediapeternakan@yahoo.co.id; mediapeternakan@ipb.ac.id
 
Creative Commons License
Media Peternakan is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.