Embryo Development and Post-Hatch Performances of Kampung Chicken by in Ovo Feeding of L-Arginine

M. Azhar, D. P. Rahardja, W. Pakiding


The research was conducted to evaluate embryo development, post-hatch performances, and growth rate of kampung chicken treated in-ovo feeding of L-Arginine. A total of 135 kampung chicken fertile eggs (weight 42-43 g) were used and divided into 5 treatment groups of three replications. They were placed in the semi-automatic incubator. The first group was without in-ovo feeding (negative control); the second group was in-ovo feeding of saline 0.9% (positive control); the 3, 4, and 5 groups were in-ovo feeding of 0.5, 1.0, and 1.5% L-Arginine, respectively. In-ovo feeding of L-Arginine were injected into albumen on day 10 of incubation period using automatic syringe in the narrow end side of egg by inserting needle through a small hole at 10 mm depth. After hatching, all day old chicks were placed in floor pens (1 x 0.5 x 0.5 m) accordance with the previous egg groups. The results showed that in-ovo feeding of L-Arginine increased weight and circumference of the embryo, but did not affect the length of embryo. In-ovo feeding of L-Arginine resulted in a higher body weight gain and a lower feed conversion even though feed intake was not significantly different compared to the control groups. The growth rate performance up to 6 weeks rearing increased significantly by increasing L-Arginine administration to 1.0%. It can be concluded that embryo development and post-hatch performances of kampung chicken were markedly increased by in-ovo feeding of L-arginine.


embryo; in-ovo feeding, amino acid; productivity; kampung chicken

Full Text:



Al-Daraji, H. J. & A. M. Salih. 2012. The influence of dietary arginine supplementation on blood traits of broiler chickens. Pakistan Journal of Nutrition 11:258-264. http://dx.doi.org/10.3923/pjn.2012.258.264

Al-Daraji, H. J., A. A. Al-Mashadani, W. K. Al-Hayani, A. S. Al-Hassani, & H. A. Mirza. 2012. Effect of in-ovo injection with L-arginine on productive and physiological traits of Japanese quail. South African Journal of Animal Science, 42:139-145. http://dx.doi.org/10.4314/sajas.v42i2.6

Al-Shamery, N. J. & M. B. S. Al-Shuhaib. 2015. Effect of in-ovo injection of various nutrients on the hatchability, mortality ratio and weight of the broiler chickens. IOSR Journal of Agriculture and Veterinary Science 8:30-33.

Azahan, E. A. E., I. A. Azma, & M. Noraziah. 2014, Effects of strain, sex and age on growth performance of malaysian kampong chickens. Malaysian Journal Animal Science 17:27-33.

Bhanja, S. K. & A. B. Mandal. 2005. Effect of in-ovoinjection of critical amino acids on pre- and post-hatch growth, immunocompetence and developmentof digestive organs in broiler chickens. Asian-Australas. J. Anim. Sci. 18:524-531. http://dx.doi.org/10.5713/ajas.2005.524

Cheled-Shoval, S. L., E. Amit-Romach, M. Barbakov, & Z. Uni. 2011. The effect of in ovo administration of mannan oligosaccharide on small intestine development during the pre-and posthatch periods in chickens. Poultry Sci. 90:2301- 2310. http://dx.doi.org/10.3382/ps.2011-01488

Chen, W., M. Tangara, J. Xu, & J. Peng. 2012. Developmental transition of pectoralis muscle from atrophy in late-term duck embryos to hypertrophy in neonates. Experimental Physiology 97:861–872. http://dx.doi.org/10.1113/expphysiol.2011.01083.x

Chen, W., Y. T. Lv, H. X. Zhang, D. Ruan, S. Wang, & Y. C. Lin. 2013. Review: Developmental specificity in skeletal muscle of late-term avian embryos and its potential manipulation. Poultry Sci. 92:2754–2764. http://dx.doi.org/10.3382/ps.2013-03099

Coşkun, I., H. Çayan, Ö. Yilmaz, A. Taskin, E. Tahtabiçen, & H. E. Samli. 2014. Effects of in-ovo pollen extract injection to fertile broiler eggs on hatchability and subsequent chick weight. Türk Tarım ve Doğa Bilimleri Dergisi 1:485–489.

Daneshyar, M., J. M. C. Geuns, J. G. Buyse, H. Kermanshahi, H. Willemsen, Z. Ansari, E. Decuypere, & N. Everaert. 2010. Evaluation of steviol injection on chicken embryo: effect on post-hatch development, proportional organ weight, plasma thyroid hormone and metabolites. Journal Poultry Science 47:71-76. http://dx.doi.org/10.2141/jpsa.009059

De Carvalho, F. B., J. H. Stringhini, M. S. Matos, R. M. J. Filho, M. B. Café, N. S. M. Leandro, & M. A. Andrade. 2012. Performance and nitrogen balance of laying hens fed increasing levels of digestible lysine and arginine. Revista Brasileira de Zootecnia, 41:2183-2188. http://dx.doi.org/10.1590/S1516-35982012001000007

Deprem, T. & N. Gulmez. 2007. The effects of in-ovo insulin-like growth factor-1 on embryonic development of musculus longus colli dorsalis in japanese quail. Turkish Journalof Veterinary and Animal Science, 31:233-240.

Fernandes, J.I.M., A.E. Murakami, E.N. Martins, M.I. Sakamoto, and E.R.M. Garcia. 2009. Effect of arginine on the development of the pectoralis muscle and the diameter and the protein: deoxyribonucleic acid rate of its skeletal myofibers in broilers. Poultry Sci. 88:1399–1406. http://dx.doi.org/10.3382/ps.2008-00214

Fouad, A. A., H. K. El-Senousey, X. J. Yang, & J. H. Yao. 2012. Role of dietary l- arginine in poultry production. International Journal of Poultry Science 11: 718-729. http://dx.doi.org/10.3923/ijps.2012.718.729

Foye, O. T. 2005. The biochemical and molecular effects of amnionic nutrient administration, “in-ovo feeding” on intestinal development and function and carbohydrate metabolism in turkey embryos and poults. Dissertation. Graduate Faculty of North Carolina State University.

Foye, O. T., C. Ashwell, Z. Uni, & P. R. Ferket. 2009. The effects of intra-amnionic feeding of arginine and/or ß-hyroxy-ß-methylbutyrate on jejunal gene expression in the turkey embryo and hatchling. International Journal of Poultry Science 8:437-445. http://dx.doi.org/10.3923/ijps.2009.437.445

Foye, O. T., Z. Uni , J. P. McMurtry, & P. R. Ferket. 2006. The effects of amniotic nutrient administration, “in-ovo feeding” of arginine and/or ß-hydroxy-ß-methyl butyrate (HMB) on insulin-like growth factors, energy metabolism and growth in turkey poults. International Journal of Poultry Science 5:309-317. http://dx.doi.org/10.3923/ijps.2006.309.317

Fu, Q., Z. X. Leng, L. R. Ding, T. Wang, C. Wen, & Y. M. Zhou. 2016. Complete replacement of supplemental DL-methionine by betaine affects meat quality and amino acid contents in broilers. Anim. Feed Sci. Technol. 212:63- 69.http://dx.doi.org/10.1016/j.anifeedsci.2015.12.004

Gasperz, V. 1991. Metode Perancangan Percobaan. Armico, Bandung.

Grodzik, M., F. Sawosz, E. Sawosz, A. Hotowy, M. Wierzbicki, M. Kutwin, S. Jaworski, & A. Chwalibog. 2013. Nano-nutrition of chicken embryos. The effect of in-ovo administration of diamond nanoparticles and l-glutamine on molecular responses in chicken embryo pectoral muscles. International Journal of Molecular Science 14:23033-23044. http://dx.doi.org/10.3390/ijms141123033

Guo-song, W., L. He-he, L. Lin-seng, & W. Ji-wen. 2012. Influence of ovo injecting igf-1 on weights of embryo, heart and liver of duck during hatching stages. International Journal of Poultry Science, 11:756-760. http://dx.doi.org/10.3923/ijps.2012.756.760

Kollias, H. D. & J. C. McDermott. 2008. Transforming growth factor-β and myostatin signaling in skeletal muscle. Journal of Applied Physiology, 104:579–587. http://dx.doi.org/10.1152/japplphysiol.01091.2007

Kornasio, R., O. Halevy, O. Kedar, & Z. Uni. 2011. Effect of in-ovo feeding and its interaction with timing of first feed on glycogen reserves, muscle growth, and body weight. Poultry Sci. 90:1467–1477. http://dx.doi.org/10.3382/ps.2010-01080

Lin, H., J. Zong-yong, L. Yin-cai Lin, Z. Chun-tian, W. Shi-kui, Y. Xue-feng, and W. Guo-yao. 2011. Effects of L-arginine on intestinal development and endogenous arginine-synthesizing enzymes in neonatal pigs. African Journal of Biotechnology, 10:7915-7925. http://dx.doi.org/10.5897/AJB11.1180

McKnight, J. R., M. C. Satterfield, W. S. Jobgen, S. B. Smith, T. E. Spencer, C. J. eininger, C. J. McNeal, & G. Wu. 2010. Beneficial effects ofL-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids, 39:349–357. http://dx.doi.org/10.1007/s00726-010-0598-z

Murakami, A. E., J. I. M. Fernandes, L. Hernandes, & T. C. Santos. 2012. Effects of starter diet supplementation with arginine on broiler production performance and on small intestine morphometry. Pesquisa Veterinaria Brasileira, 32:259-266. http://dx.doi.org/10.1590/S0100-736X2012000300014

Ospina-Rojas, I. C., A. E. Murakami, C. A. L. Oliveira, & A. F. Q. G. Guerra. 2013. Supplemental glycine and threonine effects on performance, intestinal mucosa development, and nutrient utilization of growing broiler chickens. Poultry Sci. 92:2724–2731. http://dx.doi.org/10.3382/ps.2013-03171

Sahin, K., M. Onderci, N. Sahin, T. A. Balci, M. F. Gursu, V. Juturu, & O. Kucuk. 2006. Dietary arginine silicate inositol complex improves bone mineralization in quail. Poultry Sci., 85:486–492. http://dx.doi.org/10.1093/ps/85.3.486

Shafey, T. M., A. H. Mahmoud, A. A. Alsobayel, & M. A. Abouheif. 2014. Effects of in ovo administration of amino acids on hatchability and performance of meat chickens. South African Journal of Animal Science, 44:123-130. http://dx.doi.org/10.4314/sajas.v44i2.4

Silva, L. M. G. S., A. E. Murakami, J. I. M. Fernandes, D. D. Rosa, & J. F. Urgnani. 2012. Effects of dietary arginine supplementation on broiler breeder egg production and hatchability. Brazilian Journal of Poultry Science, 14:233-304.

Smirnov, A., E. Tako, P. R. Ferket, & Z. Uni. 2006. Mucin gene expression and mucin content in the chicken intestinal goblet cells are affected by in-ovo feeding of carbohydrates. Poultry Sci. 85:669–673. http://dx.doi.org/10.1093/ps/85.4.669

Sulistyoningsih, M., D. Sunarti, E. Suprijatna, & Isroli. 2013, Performance of indigenous chicken under intensive rearing with various litter materials. International Journal of Science and Engineering, 4:52-56. http://dx.doi.org/10.12777/ijse.4.2.2013.52-56

Tako, E., P. R. Ferket, & Z. Uni. 2004. Effects of in-ovo feeding of carbohydrates and β-hydroxy-β-methylbutyrate on the development of chicken intestine. Poultry Sci. 83:2023–2028. http://dx.doi.org/10.1093/ps/83.12.2023

Tamzil, M. H., M. Ichsan, N. S. Jaya, & M. Taqiuddin. 2015, Growth rate, carcass weight and percentage weight of carcass parts of laying type cockerels, kampong chicken and arabic chicken in different ages. Pakistan Journal of Nutrition, 14:377-382. http://dx.doi.org/10.3923/pjn.2015.377.382

Zhao, G. P., H. X. Cui, R. R. Liu, M. Q. Zheng, J. L. Chen, & J. Wen. 2011. Comparison of breast muscle meat quality in 2 broiler breeds. Poultry Sci. 90:2355– 2359. http://dx.doi.org/10.3382/ps.2011-01432

DOI: https://doi.org/10.5398/medpet.2016.39.3.168

Copyright (c) 2016 Media Peternakan


Editorial Office

Media Peternakan

(Current name: Tropical Animal Science Journal)

Faculty of Animal Science Building, Bogor Agricultural University
Jln Agatis, Kampus IPB Darmaga, Bogor 16680, Indonesia
Phone/Fax.: +62-251-8421692 
e-mail: mediapeternakan@apps.ipb.ac.id; mediapeternakan@yahoo.co.id

Creative Commons License
Media Peternakan is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.