Embryo Development and Post-Hatch Performances of Kampung Chicken by in Ovo Feeding of L-Arginine

M. Azhar, D. P. Rahardja, W. Pakiding


The research was conducted to evaluate embryo development, post-hatch performances, and growth rate of kampung chicken treated in-ovo feeding of L-Arginine. A total of 135 kampung chicken fertile eggs (weight 42-43 g) were used and divided into 5 treatment groups of three replications. They were placed in the semi-automatic incubator. The first group was without in-ovo feeding (negative control); the second group was in-ovo feeding of saline 0.9% (positive control); the 3, 4, and 5 groups were in-ovo feeding of 0.5, 1.0, and 1.5% L-Arginine, respectively. In-ovo feeding of L-Arginine were injected into albumen on day 10 of incubation period using automatic syringe in the narrow end side of egg by inserting needle through a small hole at 10 mm depth. After hatching, all day old chicks were placed in floor pens (1 x 0.5 x 0.5 m) accordance with the previous egg groups. The results showed that in-ovo feeding of L-Arginine increased weight and circumference of the embryo, but did not affect the length of embryo. In-ovo feeding of L-Arginine resulted in a higher body weight gain and a lower feed conversion even though feed intake was not significantly different compared to the control groups. The growth rate performance up to 6 weeks rearing increased significantly by increasing L-Arginine administration to 1.0%. It can be concluded that embryo development and post-hatch performances of kampung chicken were markedly increased by in-ovo feeding of L-arginine.


embryo; in-ovo feeding, amino acid; productivity; kampung chicken

Full Text:



Al-Daraji, H. J. & A. M. Salih. 2012. The influence of dietary arginine supplementation on blood traits of broiler chickens. Pakistan Journal of Nutrition 11:258-264. http://dx.doi.org/10.3923/pjn.2012.258.264

Al-Daraji, H. J., A. A. Al-Mashadani, W. K. Al-Hayani, A. S. Al-Hassani, & H. A. Mirza. 2012. Effect of in-ovo injection with L-arginine on productive and physiological traits of Japanese quail. South African Journal of Animal Science, 42:139-145. http://dx.doi.org/10.4314/sajas.v42i2.6

Al-Shamery, N. J. & M. B. S. Al-Shuhaib. 2015. Effect of in-ovo injection of various nutrients on the hatchability, mortality ratio and weight of the broiler chickens. IOSR Journal of Agriculture and Veterinary Science 8:30-33.

Azahan, E. A. E., I. A. Azma, & M. Noraziah. 2014, Effects of strain, sex and age on growth performance of malaysian kampong chickens. Malaysian Journal Animal Science 17:27-33.

Bhanja, S. K. & A. B. Mandal. 2005. Effect of in-ovoinjection of critical amino acids on pre- and post-hatch growth, immunocompetence and developmentof digestive organs in broiler chickens. Asian-Australas. J. Anim. Sci. 18:524-531. http://dx.doi.org/10.5713/ajas.2005.524

Cheled-Shoval, S. L., E. Amit-Romach, M. Barbakov, & Z. Uni. 2011. The effect of in ovo administration of mannan oligosaccharide on small intestine development during the pre-and posthatch periods in chickens. Poultry Sci. 90:2301- 2310. http://dx.doi.org/10.3382/ps.2011-01488

Chen, W., M. Tangara, J. Xu, & J. Peng. 2012. Developmental transition of pectoralis muscle from atrophy in late-term duck embryos to hypertrophy in neonates. Experimental Physiology 97:861–872. http://dx.doi.org/10.1113/expphysiol.2011.01083.x

Chen, W., Y. T. Lv, H. X. Zhang, D. Ruan, S. Wang, & Y. C. Lin. 2013. Review: Developmental specificity in skeletal muscle of late-term avian embryos and its potential manipulation. Poultry Sci. 92:2754–2764. http://dx.doi.org/10.3382/ps.2013-03099

Coşkun, I., H. Çayan, Ö. Yilmaz, A. Taskin, E. Tahtabiçen, & H. E. Samli. 2014. Effects of in-ovo pollen extract injection to fertile broiler eggs on hatchability and subsequent chick weight. Türk Tarım ve Doğa Bilimleri Dergisi 1:485–489.

Daneshyar, M., J. M. C. Geuns, J. G. Buyse, H. Kermanshahi, H. Willemsen, Z. Ansari, E. Decuypere, & N. Everaert. 2010. Evaluation of steviol injection on chicken embryo: effect on post-hatch development, proportional organ weight, plasma thyroid hormone and metabolites. Journal Poultry Science 47:71-76. http://dx.doi.org/10.2141/jpsa.009059

De Carvalho, F. B., J. H. Stringhini, M. S. Matos, R. M. J. Filho, M. B. Café, N. S. M. Leandro, & M. A. Andrade. 2012. Performance and nitrogen balance of laying hens fed increasing levels of digestible lysine and arginine. Revista Brasileira de Zootecnia, 41:2183-2188. http://dx.doi.org/10.1590/S1516-35982012001000007

Deprem, T. & N. Gulmez. 2007. The effects of in-ovo insulin-like growth factor-1 on embryonic development of musculus longus colli dorsalis in japanese quail. Turkish Journalof Veterinary and Animal Science, 31:233-240.

Fernandes, J.I.M., A.E. Murakami, E.N. Martins, M.I. Sakamoto, and E.R.M. Garcia. 2009. Effect of arginine on the development of the pectoralis muscle and the diameter and the protein: deoxyribonucleic acid rate of its skeletal myofibers in broilers. Poultry Sci. 88:1399–1406. http://dx.doi.org/10.3382/ps.2008-00214

Fouad, A. A., H. K. El-Senousey, X. J. Yang, & J. H. Yao. 2012. Role of dietary l- arginine in poultry production. International Journal of Poultry Science 11: 718-729. http://dx.doi.org/10.3923/ijps.2012.718.729

Foye, O. T. 2005. The biochemical and molecular effects of amnionic nutrient administration, “in-ovo feeding” on intestinal development and function and carbohydrate metabolism in turkey embryos and poults. Dissertation. Graduate Faculty of North Carolina State University.

Foye, O. T., C. Ashwell, Z. Uni, & P. R. Ferket. 2009. The effects of intra-amnionic feeding of arginine and/or ß-hyroxy-ß-methylbutyrate on jejunal gene expression in the turkey embryo and hatchling. International Journal of Poultry Science 8:437-445. http://dx.doi.org/10.3923/ijps.2009.437.445

Foye, O. T., Z. Uni , J. P. McMurtry, & P. R. Ferket. 2006. The effects of amniotic nutrient administration, “in-ovo feeding” of arginine and/or ß-hydroxy-ß-methyl butyrate (HMB) on insulin-like growth factors, energy metabolism and growth in turkey poults. International Journal of Poultry Science 5:309-317. http://dx.doi.org/10.3923/ijps.2006.309.317

Fu, Q., Z. X. Leng, L. R. Ding, T. Wang, C. Wen, & Y. M. Zhou. 2016. Complete replacement of supplemental DL-methionine by betaine affects meat quality and amino acid contents in broilers. Anim. Feed Sci. Technol. 212:63- 69.http://dx.doi.org/10.1016/j.anifeedsci.2015.12.004

Gasperz, V. 1991. Metode Perancangan Percobaan. Armico, Bandung.

Grodzik, M., F. Sawosz, E. Sawosz, A. Hotowy, M. Wierzbicki, M. Kutwin, S. Jaworski, & A. Chwalibog. 2013. Nano-nutrition of chicken embryos. The effect of in-ovo administration of diamond nanoparticles and l-glutamine on molecular responses in chicken embryo pectoral muscles. International Journal of Molecular Science 14:23033-23044. http://dx.doi.org/10.3390/ijms141123033

Guo-song, W., L. He-he, L. Lin-seng, & W. Ji-wen. 2012. Influence of ovo injecting igf-1 on weights of embryo, heart and liver of duck during hatching stages. International Journal of Poultry Science, 11:756-760. http://dx.doi.org/10.3923/ijps.2012.756.760

Kollias, H. D. & J. C. McDermott. 2008. Transforming growth factor-β and myostatin signaling in skeletal muscle. Journal of Applied Physiology, 104:579–587. http://dx.doi.org/10.1152/japplphysiol.01091.2007

Kornasio, R., O. Halevy, O. Kedar, & Z. Uni. 2011. Effect of in-ovo feeding and its interaction with timing of first feed on glycogen reserves, muscle growth, and body weight. Poultry Sci. 90:1467–1477. http://dx.doi.org/10.3382/ps.2010-01080

Lin, H., J. Zong-yong, L. Yin-cai Lin, Z. Chun-tian, W. Shi-kui, Y. Xue-feng, and W. Guo-yao. 2011. Effects of L-arginine on intestinal development and endogenous arginine-synthesizing enzymes in neonatal pigs. African Journal of Biotechnology, 10:7915-7925. http://dx.doi.org/10.5897/AJB11.1180

McKnight, J. R., M. C. Satterfield, W. S. Jobgen, S. B. Smith, T. E. Spencer, C. J. eininger, C. J. McNeal, & G. Wu. 2010. Beneficial effects ofL-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids, 39:349–357. http://dx.doi.org/10.1007/s00726-010-0598-z

Murakami, A. E., J. I. M. Fernandes, L. Hernandes, & T. C. Santos. 2012. Effects of starter diet supplementation with arginine on broiler production performance and on small intestine morphometry. Pesquisa Veterinaria Brasileira, 32:259-266. http://dx.doi.org/10.1590/S0100-736X2012000300014

Ospina-Rojas, I. C., A. E. Murakami, C. A. L. Oliveira, & A. F. Q. G. Guerra. 2013. Supplemental glycine and threonine effects on performance, intestinal mucosa development, and nutrient utilization of growing broiler chickens. Poultry Sci. 92:2724–2731. http://dx.doi.org/10.3382/ps.2013-03171

Sahin, K., M. Onderci, N. Sahin, T. A. Balci, M. F. Gursu, V. Juturu, & O. Kucuk. 2006. Dietary arginine silicate inositol complex improves bone mineralization in quail. Poultry Sci., 85:486–492. http://dx.doi.org/10.1093/ps/85.3.486

Shafey, T. M., A. H. Mahmoud, A. A. Alsobayel, & M. A. Abouheif. 2014. Effects of in ovo administration of amino acids on hatchability and performance of meat chickens. South African Journal of Animal Science, 44:123-130. http://dx.doi.org/10.4314/sajas.v44i2.4

Silva, L. M. G. S., A. E. Murakami, J. I. M. Fernandes, D. D. Rosa, & J. F. Urgnani. 2012. Effects of dietary arginine supplementation on broiler breeder egg production and hatchability. Brazilian Journal of Poultry Science, 14:233-304.

Smirnov, A., E. Tako, P. R. Ferket, & Z. Uni. 2006. Mucin gene expression and mucin content in the chicken intestinal goblet cells are affected by in-ovo feeding of carbohydrates. Poultry Sci. 85:669–673. http://dx.doi.org/10.1093/ps/85.4.669

Sulistyoningsih, M., D. Sunarti, E. Suprijatna, & Isroli. 2013, Performance of indigenous chicken under intensive rearing with various litter materials. International Journal of Science and Engineering, 4:52-56. http://dx.doi.org/10.12777/ijse.4.2.2013.52-56

Tako, E., P. R. Ferket, & Z. Uni. 2004. Effects of in-ovo feeding of carbohydrates and β-hydroxy-β-methylbutyrate on the development of chicken intestine. Poultry Sci. 83:2023–2028. http://dx.doi.org/10.1093/ps/83.12.2023

Tamzil, M. H., M. Ichsan, N. S. Jaya, & M. Taqiuddin. 2015, Growth rate, carcass weight and percentage weight of carcass parts of laying type cockerels, kampong chicken and arabic chicken in different ages. Pakistan Journal of Nutrition, 14:377-382. http://dx.doi.org/10.3923/pjn.2015.377.382

Zhao, G. P., H. X. Cui, R. R. Liu, M. Q. Zheng, J. L. Chen, & J. Wen. 2011. Comparison of breast muscle meat quality in 2 broiler breeds. Poultry Sci. 90:2355– 2359. http://dx.doi.org/10.3382/ps.2011-01432

DOI: http://dx.doi.org/10.5398/medpet.2016.39.3.168

Copyright (c) 2016 Media Peternakan


Editorial Office

Media Peternakan, Journal of Animal Science and Technology

Faculty of Animal Science Building, Bogor Agricultural University
Jln Agatis, Kampus IPB Darmaga, Bogor 16680, Indonesia
Phone/Fax.: +62-251-8421692
e-mail: mediapeternakan@yahoo.co.id; mediapeternakan@ipb.ac.id

Creative Commons License
Media Peternakan is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.