Chemical Characteristics of Goat Cheese with Different Percentages of Mixed Indigenous Probiotic Culture during Ripening

Triana Setyawardani, Agustinus Hantoro Djoko Rahardjo, Mardiati Sulistyowati


This research was aimed to study the chemical characteristic of goat cheese that used various concentrations of probiotic starter with combinations of Lactobacillus rhamnosus TW2 and Lactobacillus plantarum TW14 isolates. The experiment was conducted with a completely randomized design with a 4 x 4 factorial arrangement. The first factor was the concentration of probiotic starter consisted of 4 lavels i.e., 2.5, 5.0, 7.5, and 10% v/v. All probiotic concentrations used the same ratio of L. rhamnosus TW2 and L. plantarum TW14, i.e. 1:1. The second factor was the duration of ripening process consisted of 4 levels i.e., 0 (no ripening), 10, 20, and 30 days at 5oC. The observed variables were cheese chemical properties including water content, protein, fat, ash, pH, total titratable acidity (TTA), free fatty acids (FFA), and proteolysis profile. The results showed that addition of probiotic starter at a concentration of 5% mixture of L. rhamnosus TW2 and L. plantarum TW14 increased (P<0.01) only on ash content. The duration of ripening process up to 30 d significantly increased (P<0.01) protein and fat. Combination of probiotic starter concentrations and duration of ripening process increased (P<0.01) fat and ash contents. Proteolysis profile showed that protein was degraded into 72 and 52kDa proteins, but no 17kDa protein was found in cheese ripened for 30 d. It is concluded that 30 d duration of ripening at 5oC was the main contributing factor to chemical characteristics of cheese including chemical properties, pH, TTA, FFA, and proteolysis profile of probiotic goat cheese, while the concentration of mixed probiotics affected ash content, TTA and FFA of cheese.


Lactobacillus rhamnosusTW2; Lactobacillus plantarum TW14; cheese; starter; characteristics

Full Text:



Albenzio, M., A. Santillo, M. Caroprese, A. Braghieri, A. Sevi, & F. Napolitano. 2013. Composition and sensory profiling of probiotic Scamorza ewe milk cheese. J. Dairy Sci. 96: 2792-2800.

AOAC [Association of Official Analytical Chemists]. 2006. Official Method of Analysis. 15th Ed. Association of Official Analytical Chemists Inc., Virginia USA.

Banks, J. M. 2007. Flavour, texture and flavour defects in hard and semi-cheeses. In: P. L. H. McSweeney (ed.) Cheese Problems Solved. Woodhead Publishing Limited, Cambridge, England.

Bezerra, T. K. A., A. R. R. de Araujo, E. S. do Nascimento, J. E. de Matos Paz, C. A. Gadelha, T. S. Gadelha, M. T. B. Pacheco, R. d. C. R. do Egypto Queiroga, M. E. G. de Oliveira, & M. S. Madruga. 2016. Proteolysis in goat “coalho” cheese supplemented with probiotic lactic acid bacteria. Food Chem. 196: 359-366.

Choi, J., L. Sabikhi, A. Hassan, & S. Anand. 2012. Bioactive peptides in dairy products. Int. J. Dairy 65: 1-12.

D’Amato, D., M. Sinigaglia, & M. R. Corbo. 2008. Microbiological and physicochemical characterisation of Canestrello Pugliese cheese, a traditional Apulian cheese made from cows’ milk. Aust. J. Dairy Technol. 63: 61.

Dantas, A. B., V. F. Jesus, R. Silva, C. N. Almada, E. Esmerino, L. P. Cappato, M. C. Silva, R. S. Raices, R. N. Cavalcanti, & C. C. Carvalho. 2016. Manufacture of probiotic Minas Frescal cheese with Lactobacillus casei Zhang. J. Dairy Sci. 99: 18-30.

De Marchi, M., V. Bonfatti, A. Cecchinato, G. Di Martino, & P. Carnier. 2009. Prediction of protein composition of individual cow milk using mid-infrared spectroscopy. Ital. J. Anim. Sci. 8: 399-401.

Dervisoglu, M. & O. Aydemir. 2007. Physicochemical and microbiological characteristics of Kulek cheese made from raw and heat-treated milk. World J. Microbiol. Biotechnol. 23: 451-460.

Diezhandino, I., D. Fernández, L. González, P. L. H. McSweeney, & J. M. Fresno. 2015. Microbiological, physico-chemical and proteolytic changes in a Spanish blue cheese during ripening (Valdeón cheese). Food Chem. 168: 134-141.

FAO/WHO. 2002. working group report on drafting guidelines for the evaluation of probiotics in food London, Ontario, Canada No. 30.

Formaggioni, P., M. Malacarne, A. Summer, E. Fossa, & P. Mariani. 2001. Milk with abnormal acidity. VI. The role of phosphorus content and the rennet-coagulation properties of Italian Friesian herd milks. Annali della Facolta di Medicina Veterinaria, Universita di Parma 21: 261-268.

Gómez-Ruiz, J. Á., C. Ballesteros, M. Á. G. Viñas, L. Cabezas, & I. Martínez-Castro. 2002. Relationships between volatile compounds and odour in Manchego cheese: comparison between artisanal and industrial cheeses at different ripening times. Le Lait 82: 613-628.

Guidone, A., A. Braghieri, S. Cioffi, S. Claps, F. Genovese, G. Morone, F. Napolitano, & E. Parente. 2015. Effect of adjuncts on microbiological and chemical properties of Scamorza cheese. J. Dairy Sci. 98: 1467-1478.

Hafeez, Z., C. Cakir-Kiefer, E. Roux, C. Perrin, L. Miclo, & A. Dary-Mourot. 2014. Strategies of producing bioactive peptides from milk proteins to functionalize fermented milk products. Food Res. Int. 63, Part A: 71-80.

Hayaloglu, M. Guven, P. Fox, J. Hannon, & P. McSweeney. 2004. Proteolysis in Turkish White-brined cheese made with defined strains of Lactococcus. Int. Dairy J. 14: 599-610.

Hekken, D., M. Tunick, & Y. Park. 2005. Effect of frozen storage on the proteolytic and rheological properties of soft caprine milk cheese. J. Dairy Sci. 88: 1966-1972.

Juan, B., A. Zamora, J. M. Quevedo, & A.-J. Trujillo. 2016. Physicochemical, microbiological and sensory profiles of fermented milk containing probiotic strains isolated from kefir. LWT-Food Science and Technology 69: 17-23.

Jung, H. J., E. J. Ko, & H. S. Kwak. 2013. Comparison of physicochemical and sensory properties between cholesterol-removed gouda cheese and gouda cheese during ripening. Asian-Australas. J. Anim. Sci. 26: 1773-1780.

Korhonen, H. & A. Pihlanto. 2006. Bioactive peptides: Production and functionality. Int. Dairy J. 16: 945-960.

Lavasani, A. S., M. Ehsani, S. Mirdamadi, & S. Mousavi. 2012. Study of proteolysis and lipolysis of probiotic Lighvan cheese. International Journal of AgriScience 2: 341-352.

Londono, M., J. U. Sepulveda, & V. Higuera. 2011. Identification of volatile compounds, free amino acids through chromatography and sensory properties of the pasta filata cheeses known as momposino. Vitae 18: 261-269.

McSweeney, P. L. & M. J. Sousa. 2000. Biochemical pathways for the production of flavour compounds in cheeses during ripening: A review. Le Lait 80: 293-324.

Melilli, C., D. M. Barbano, M. Manenti, J. M. Lynch, S. Carpino, & G. Licitra. 2004. Lipolysis and proteolysis in ragusano cheese during brine salting at different temperatures*. J. Dairy Sci. 87: 2359-2374.

Miller, G. D., J. K. Jarvis, & L. D. McBean. 2006. Handbook of dairy foods and nutrition. CRC press.

Molimard, P. & H. Spinnler. 1996. Review: Compounds involved in the flavor of surface mold-ripened cheeses: Origins and properties. J. Dairy Sci. 79: 169-184.

Mushtaq, M., A. Gani, F. A. Masoodi, & M. Ahmad. 2016. Himalayan cheese (Kalari/Kradi) – Effect of different probiotic strains on oxidative stability, microbiological, sensory and nutraceutical properties during storage. Food sci. technol. 67: 74-81.

Nagpal, R., P. Behare, R. Rana, A. Kumar, M. Kumar, S. Arora, F. Morotta, S. Jain, & H. Yadav. 2011. Bioactive peptides derived from milk proteins and their health beneficial potentials: an update. Food Funct. 2: 18-27.

Park, Y. 1990. Nutrient profiles manufactured in of commercial goat milk cheeses the United States. J. Dairy Sci. 73: 3059-3067.

Raynal-Ljutovac, K., G. Lagriffoul, P. Paccard, I. Guillet, & Y. Chilliard. 2008. Composition of goat and sheep milk products: An update. Small Rumin. Res. 79: 57-72.

Sallami, L., E. Kheadr, I. Fliss, & J. Vuillemard. 2004. Impact of autolytic, proteolytic, and nisin-producing adjunct cultures on biochemical and textural properties of Cheddar cheese. J. Dairy Sci. 87: 1585-1594.

Setyawardani, T., W. Rahayu, R. Maheswari, & N. Palupi. 2011. Identification and characterization of probiotic lactic acid bacteria isolated from indigenous goat milk. Anim. Prod. 13.

Setyawardani, T., W. P. Rahayu, R. R. A. Maheswari, & N. S. Palupi. 2014. Antimicrobial activity and adhesion ability of indigenous lactic acid bacteria isolated from goat milk. Int. Food Res. J. 21: 959-964.

Shakeel-Ur-Rehman, N. Y. Farkye, & B. Yim. 2003. Use of dry milk protein concentrate in pizza cheese manufactured by culture or direct acidification. J. Dairy Sci. 86: 3841–3848.

Singh, T. K., M. A. Drake, & K. R. Cadwallader. 2003. Flavor of cheddar cheese: a chemical and sensory perspective. Compr Rev Food Sci F 2: 166-189.

Sudarmadji, S., B. Haryono, & Suhardi. 2007. Prosedur Analisa untuk Bahan Makanan dan Pertanian. Liberty, Yogyakarta.

Surono, I. S. 2004. Probiotik Susu Fermentasi dan Kesehatan. YAPMMI, Jakarta.

Tabet, E., N. P. Mangia, E. Mouannes, G. Hassoun, Z. Helal, & P. Deiana. 2016. Characterization of goat milk from Lebanese Baladi breed and his suitability for setting up a ripened cheese using a selected starter culture. Small Rumin. Res. 140: 13-17.

Thomann, S., A. Brechenmacher, & J. Hinrichs. 2008. Strategy to evaluate cheesemaking properties of milk from different goat breeds. Small Rumin. Res. 74: 172-178.

Yasin, N. M. N. & S. M. Shalaby. 2013. Physiochemical and sensory properties of functional low fat cheesecake manufactured using cottage cheese. Ann. Agric. Sci. 58: 61-67.

Yasmin, A., M. S. Butt, A. Sameen, & M. Shahid. 2013. Physicochemical and amino acid profiling of cheese whey. PJN 12: 455.


Copyright (c) 2017 Media Peternakan


Editorial Office

Media Peternakan, Journal of Animal Science and Technology

Faculty of Animal Science Building, Bogor Agricultural University
Jln Agatis, Kampus IPB Darmaga, Bogor 16680, Indonesia
Phone/Fax.: +62-251-8421692
Creative Commons License
Media Peternakan is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.