Isolation and Characterisation of Sulphur Oxidizing Bacteria Isolated from Hot Spring in Malaysia for Biological Deodorisation of Hydrogen Sulphide in Chicken Manure

M. Y. Hidayat, H. M. Saud, A. A. Samsudin

Abstract


In this study, the isolation of sulphur oxidising bacteria (SOB) from hot spring in Malaysia was carried out in an enrichment culture using sodium thiosulphate as a sole energy and CO2 as a sole carbon source. A total number of 80 SOB isolates were obtained from the agar plate and considered as positive SOB due to their abilities using thiosulphate for growth. All the isolates were initially screened for their fast growths in liquid medium and 13 isolates were selected for another screening process. Three SOB isolates namely isolate AH18, AH25, and AH28 were selected based on their abilities to grow faster, produce the highest sulphate ion and reducing the pH in the growth medium. The cells were Gram-negative and short rod-shaped. The effects of various variables including temperature (25-45 °C), pH (4-9), sodium thiosulphate concentrations (4-100 mM) and metabolic characteristic were evaluated on bacterial growth and their sulphur oxidation activities. The optimum pH of all the potential isolates occurred at pH 8.0. Meanwhile, the optimum temperature for isolate AH18, AH25 and AH28 occurred at 45 °C, 30 °C, and 30-45 °C, respectively. The three isolates were classified as facultative chemolithotroph with the capability of growth in thiosulphate concentration as high as 100 mM. Therefore, given the ability in the oxidation of thiosulphate, temperature and pH adaptabilities, with the metabolic flexibilities of isolates AH18, AH25, and AH28 could be a good H2S biological deodorizing candidate.

Keywords


sulphur oxidising bacteria; hot spring; biological deodorisation; chicken manure; hydrogen sulphide

Full Text:

PDF

References


Baioumy, H., M. Nawawi, K. Wagner, & M. H. Arifin. 2015. Geochemistry and geothermometry of non-volcanic hot springs in West Malaysia. J. Volcanol. Geotherm. Res. 290: 12–22. https://doi.org/10.1016/j.jvolgeores.2014.11.014

Bezsudnova, E. Yu., D. Yu. Sorokin, T. V. Tikhonova, & V. O. Popov. 2007. Thiocyanate hydrolase, the primary enzyme initiating thiocyanate degradation in the novel obligately chemolithoautotrophic halophilic sulphur oxidizing bacterium Thiohalophilus thiocyanoxidans. Biochim. Biophys. Acta. 1774: 1563-1570. https://doi.org/10.1016/j.bbapap.2007.09.003

Cha, J. M., W. S. Cha, & J. H. Lee. 1999. Removal of organo-sulphur odour compounds by Thiobacillus novellus SRM, sulphur-oxidizing bacteria. Process. Biochem. 34: 659-665. https://doi.org/10.1016/S0032-9592(98)00139-3

Chen, X.G., A. L. Geng, R. Yan, W. D. Gould, Y. L. Ng, & D. T. Liang. 2004. Isolation and characterisation of sulphur-oxidising Thiomonas sp. and its potential application in biological deodorisation. Lett. Appl. Microbiol. 39: 495-503. https://doi.org/10.1111/j.1472-765X.2004.01615.x

Chung, Y. C., C. Huang, & C. P. Tseng. 1996. Biodegradation of hydrogen sulphide by a laboratory-scale immobilised Pseudomonas putida CH11 biofilter. Biotechnol. Prog. 12: 773-778. https://doi.org/10.1021/bp960058a

Chung, Y. C., K. L. Ho, & C. P. Tseng. 2007. Two-stage biofilter for effective NH3 removal from waste gases containing high concentrations of H2S. J. Air. Waste. Manag. Assoc. 57: 337-347. https://doi.org/10.1080/10473289.2007.10465332

De Gusseme, B., P. De Schryver, M. De Cooman, K. Verbeken, P. Boeckx, W. Verstraete, & N. Boon. 2009. Nitrate-reducing, sulphide-oxidizing bacteria as microbial oxidants for rapid biological sulphide removal. FEMS. Microb. Ecol. 67: 151-161. https://doi.org/10.1111/j.1574-6941.2008.00598.x

Dehghanzadeh, R., H. Aslani, A. Torkian, & M. Asadi. 2011. Interaction of acrylonitrile vapours on a bench scale biofilter treating styrene-polluted waste gas streams. Iranian. J. Environ. Health. Sci. Eng. 8: 159–168.

Druschel, G. K., M. A. A. Schoonen, D. K. Nordstrom, J. W. Ball, Y. Xu, & C. A. Cohn. 2003. Sulphur geochemistry of hydrothermal waters in Yellowstone National Park, Wyoming, USA. III. An anion-exchange resin technique for sampling and preservation of sulfoxyanions in natural waters. Geochem. Trans. 4: 12-19. https://doi.org/10.1186/1467-4866-4-12

Ehrlich, H.L. & D. K. Newman. 2009. Geomicrobiology of Sulfur. Geomicrobiology. 5th ed. CRC Press, Boca Raton, p. 439-489.

Graff, A. & S. Stubner. 2003. Isolation and molecular characterisation of thiosulphate-oxidising bacteria from an Italian rice field soil. Syst. Appl. Microbiol. 26: 445-452. https://doi.org/10.1078/072320203322497482

Gutarowska, B., K. Matusiak, S. Borowski, A. Rajkowska, & B. Brycki. 2014. Removal of odorous compounds from poultry manure by microorganisms on perlite-bentonite carrier. J. Environ. Manag. 141: 70-76. https://doi.org/10.1016/j.jenvman.2014.03.017

Hassan, S. H. A., W. Steven, V. Ginkel, S. M. Kim, S. H. Yoon, S. H. Joo, B. S. Shin, B. H. Jeon, W. Bae, & S. E. Oh. 2010. Isolation and characterisation of Acidithiobacillus caldus from a sulphur-oxidising bacterial biosensor and its role in detection of toxic chemicals. J. Microbiol. Methods. 82: 151-155. https://doi.org/10.1016/j.mimet.2010.05.008

Ho, K. L., Y. C. Chung, Y. H. Lin, & C. P. Tseng. 2008. Microbial population analysis and field application of biofilter for the removal of volatile-sulphur compounds from swine wastewater treatment system. J. Hazard. Mater. 152: 580-588. https://doi.org/10.1016/j.jhazmat.2007.07.021

Hucker, G. J. 1921. A new modification and application of the gram stain. J. Bacteriol. 6: 395–397.

Kantachote, D., W. Charernjiratrakul, N. Noparatnaraporn, & K. Oda. 2008. Selection of sulphur oxidising bacterium for sulphide removal in sulphate rich wastewater to enhance biogas production. Electron. J. Biotechnol. 11: 1-12. https://doi.org/10.2225/vol11-issue2-fulltext-13

Kim, K. Y., H. J. Ko, H. T. Kim, Y. S. Kim, Y. M. Roh, C. M. Lee, H. S. Kim, & C. N. Kim. 2007. Sulphuric odorous compounds emitted from pig-feeding operations. Atmos. Environ. 41: 4811-4818. https://doi.org/10.1016/j.atmosenv.2007.02.012

Kolmert, Å., P. Wikström, & K. B. Hallberg. 2000. A fast and simple turbidimetric method for the determination of sulphate in sulphate-reducing bacterial cultures. J. Microbiol. Methods. 41: 179-184. https://doi.org/10.1016/S0167-7012(00)00154-8

Kuenen, J. G., L. A. Robertson, & O. H. Tuovinen. 1992. The genera Thiobacillus, Thiomicrospira and Thiosphaera. In: A. Balows, H. G. Truper, M. Dworki, W. Harder, & K. H. Schleifer (Eds). The prokaryotes. New York. Springer-Verlag. p. 2636-2657.

Lee, E. Y., K. S. Cho, & H. W. Ryu. 2000. Characterisation of sulphur oxidation by an autotrophic sulphur oxidiser, Thiobacillus sp. ASWW-2. Biotechnol. Bioprocess. Eng. 5: 48–52. https://doi.org/10.1007/BF02932353

Lin, W.C., Y. P. Chen, & C. P. Tseng. 2013. Pilot-scale chemical-biological system for efficient H2S removal from biogas. Bioresour. Technol. 135: 283-291. https://doi.org/10.1016/j.biortech.2012.10.040

Makzum, S., M. A. Amoozegar, S. M. M. Dastgheib, H. Babavalian, H. Tebyanian, & F. Shakeri. 2016. Study on Haloalkaliphilic sulphur oxidising bacterium for thiosulphate removal in treatment of sulfidic spent caustic. ILNS. 57: 49-57. https://doi.org/10.18052/www.scipress.com/ILNS.57.49

Olguin-Lora, P., S. Le Borgne, G. Castorena-Cortes, T. Roldan-Carrillo, I. Zapata-Penasco, J. Reyes-Avila, & S. Alcantara-Perez. 2011. Evaluation of haloalkaliphilic sulphur-oxidizing microorganisms with potential application in the effluent treatment of the petroleum industry. Biodegradation. 22: 83–93. https://doi.org/10.1007/s10532-010-9378-4

Oprime, M. E. A. G., O. J. Garcia, & A. A. Cardoso. 2001. Oxidation of H2S in acid solution by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Process. Biochem. 37: 111-114. https://doi.org/10.1016/S0032-9592(01)00179-0

Park, S. J., V. H. Pham, M. Y. Jung, S. J. Kim, J. G. Kim, D. H. Roh, & S. K. Rhee. 2011. Thioalbus denitrifications gen. nov., sp. nov., a chemolithoautotrophic sulphur-oxidising gammaproteobacterium, isolated from marine sediment. Int. J. Syst. Evol. Microbiol. 61: 2045–2051. https://doi.org/10.1099/ijs.0.024844-0

Pokorna, D., & J. Zabranska. 2015. Sulphur-oxidising bacteria in environmental technology. Biotechnol. Adv. 33: 1246-1259. https://doi.org/10.1016/j.biotechadv.2015.02.007

Shi, J., H. Lin, X. Yuan, & Y. Zhao. 2011. Isolation and characterisation of a novel sulphur oxidising chemolithoautotroph Halothiobacillus from Pb-polluted paddy soil. Afr. J. Biotechnol. 10: 4121–4126.

Skirnisdottir, S., G. O. Hreggvidson, O. Holst, & J. K. Kristjansson. 2001a. Isolation and characterisation of a mixotrophic sulphur-oxidising Thermus scotoductus. Extremophiles. 5: 45-51. https://doi.org/10.1007/s007920000172

Skirnisdottir, S., G. O. Hreggvidson, O. Holst, & J. K. Kristjansson. 2001b. A new ecological adaptation to high sulphide by Hydrogenobacter sp. growing on sulphur compounds but not on hydrogen. Microbiol. Res. 156: 41-47. https://doi.org/10.1078/0944-5013-00068

Skirnisdottir, S., G. O. Hreggvidsson, S. Hjorleifsdottir, V. T. Marteinsson, S. K, Petursdottir, & O. Holst. 2000. Influence of sulphide and temperature on species composition and community structure of hot spring microbial mats. Appl. Environ. Microbiol. 66: 2835–2841. https://doi.org/10.1128/AEM.66.7.2835-2841.2000

Sorokin, D.Y., V. M. Gorlenko, T. P. Tourova, A. I. Tsapin, K. H. Nealson, & J. G. Kuenen. 2002. Thioalkalimicrobium cyclicum sp. nov. and Thioalkalivibrio jannaschii sp. nov., novel species of haloalkaliphilic, obligately chemolithoautotrophic sulphur-oxidizing bacteria from hypersaline alkaline Mono Lake (California). Int. J. Syst. Evol. Microbiol. 52: 913-920.

Sorokin, D. Y., B. Abbas, E. V. Zessen, & G. Muyzer. 2014. Isolation and characterization of an obligately chemolithoautotrophic Halothiobacillus strain capable of growth on thiocyanate as an energy source. FEMS. Microbiol. Lett. 354: 69-74. https://doi.org/10.1111/1574-6968.12432

Spring, S., P. Kämpfer, & K. H. Schleifer. 2001. Limnobacter thiooxidans gen. nov., sp. nov., a novel thiosulphate-oxidising bacterium isolated from freshwater lake sediment. Int. J. Syst. Evol. Microbiol. 51: 1463-1470. https://doi.org/10.1099/00207713-51-4-1463

Takano, B., M. Koshida, Y. Fujiwara, K. Sugimori, & S. Takayanagi. 1997. Influence of sulphur-oxidizing bacteria on the budget of sulphate in Yugama crater lake, Kusatsu-Shirane volcano, Japan. Biogeochemistry. 38: 227–253. https://doi.org/10.1023/A:1005805100834

Ullah, I., G. Jilani, M. I. Haq, & A. Khan. 2013. Enhancing bio-available phosphorous in soil through sulphur oxidation by Thiobacilli. Br. Microbiol. Res. J. 3(3): 378-392. https://doi.org/10.9734/BMRJ/2013/4063

Vardanyan, N. S., & A. K. Vardanyan. 2014. New sulphur oxidising bacteria isolated from bioleaching pulp of zinc and copper concentrates. Univers. J. Microbiol. Res. 2: 27–31.

Vikromvarasiri, N., S. Boonyawanich, & N. Pisutpaisal. 2015. Optimizing sulphur oxidising performance of Paracoccus pantotrophus isolated from leather industry wastewater. Energy. Procedia. 79: 629-633. https://doi.org/10.1016/j.egypro.2015.11.544

Vidyalakshmi, R. & R. Sridar. 2007. Isolation and characterization of sulphur oxidizing bacteria. J. Cult. Collect. 5: 73-77.

Vlasceanu, L., P. Radu, & B. R. Kinkle. 1997. Characterisation of Thiobacillus thioparus LV43 and its distribution in a chemoautotrophically based groundwater ecosystem. Appl. Environ. Microbiol. 63: 3123–3127.

Watsuntorn, W., C. Ruangchainikom, E. R. Rene, P.N.L. Lens, & W. Chulalaksananukul. 2017. Hydrogen sulphide oxidation under anoxic conditions by a nitrate- reducing, sulphide-oxidsing bacterium isolated from the Mae Um Long Luang hot spring, Thailand. Int. Biodeterior. Biodegradation. 124: 196-205. https://doi.org/10.1016/j.ibiod.2017.06.013

Xu, X. J., C. Chen, H. Guo, A. Wang, N. Ren, & D. J. Lee. 2016. Characterization of a newly isolated strain Pseudomonas sp. C27 for sulphide oxidation: Reaction kinetics and stoichiometry. Sci. Rep. 6:21032. http://doi.org/10.1038/srep21032 [22 November 2017]. https://doi.org/10.1038/srep21032

Yang, Z. H., K. Stoven, S. Haneklaus, B. R. Singh, & E. Schnug. 2010. Elemental sulphur oxidation by Thiobacillus spp. and aerobic heterotrophic sulphur-oxidising bacteria. Pedosphere. 20: 71-79. https://doi.org/10.1016/S1002-0160(09)60284-8




DOI: http://dx.doi.org/10.5398/medpet.2017.40.3.178

Copyright (c) 2017 Media Peternakan

 

Editorial Office

Media Peternakan, Journal of Animal Science and Technology

Faculty of Animal Science Building, Bogor Agricultural University
Jln Agatis, Kampus IPB Darmaga, Bogor 16680, Indonesia
Phone/Fax.: +62-251-8421692
e-mail: mediapeternakan@yahoo.co.id; mediapeternakan@ipb.ac.id
 

Creative Commons License
Media Peternakan is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.