Aplikasi Actinomycetes dan Bakteriofag pada Tomat Sambung untuk Mengendalikan Penyakit Layu Bakteri Ralstonia solanacearum dan Meningkatkan Hasil Buah

  • Lisa Navitasari Politeknik Pembangunan Pertanian Malang, Jl. DR. Cipto 144a Bedali - Lawang, Malang 65200
  • Tri Joko Departemen Proteksi Tanaman, Fakultas Pertanian, Universitas Gadjah Mada, Jl. Flora Bulaksumur Yogyakarta 55281
  • Rudi Hari Murti Departemen Proteksi Tanaman, Fakultas Pertanian, Universitas Gadjah Mada, Jl. Flora Bulaksumur Yogyakarta 55281
  • Triwidodo Arwiyanto Departemen Proteksi Tanaman, Fakultas Pertanian, Universitas Gadjah Mada, Jl. Flora Bulaksumur Yogyakarta 55281


Ralstonia solanacearum (Smith) is a soil-borne pathogen that causes bacterial wilt disease and is a complex species in races, biovars, phylotypes, and strains of various pathogenicities. As a result, the pathogen is difficult to control. An alternative control is by applying actinomycetes and bacteriophages on tomato grafted with resistant rootstock. This study aims to find the best combination in controlling bacterial wilt disease among grafted tomato plants and/or actinomycetes and/or bacteriophage treatments to increase yields. The graftings were between Amelia (East West, Indonesia) or H7996 (AVRDC) as rootstocks, and Servo (East West, Indonesia) as the susceptible scion. The grafting used the tube method, and the experimental design was a randomized completely block design with the grafted plants treated by actinomycetes and/or bacteriophages with three replications. The results indicated that actinomycetes application on plants grafted with Amelia rootstock or H7996 and the application of bacteriophages on susceptible varieties (Servo) could be the best alternative treatment in controlling the bacterial wilt disease. The susceptible varieties with the actinomycetes or bacteriophages application could even increase fruit yields higher than the grafted tomatoes treated with actinomycetes or bacteriophages. In fact, the susceptible tomato varieties with bacteriophage treatment showed high fruit yield.


Keywords: actinomycetes, bacteriophages, bacterial wilt disease, fruit yield, Ralstonia solanacearum


Download data is not yet available.


Adams MH. 1949. The stability of bacterial viruses in solutions of salts. J Gen Physiol. 32: 579–594. https://doi.org/10.1085/jgp.32.5.579

Agrios GN. 2005. Plant Pathology. Ed. Ke-5. New York (US): Elsevier Academic Press.

Arwiyanto T & Hartana A. 1999. Pengendalian hayati penyakit layu bakteri tembakau: 2. Percobaan di rumah kaca. Jurnal Perlindungan Tanaman Indonesia. 5(1): 5059. https://doi.org/10.17660/ ActaHortic.2015.1069.24

Arwiyanto T. 2014. Ralstonia solanacearum: Biology, Penyakit yang Ditimbulkan dan Pengelolaannya. Yogyakarta (ID): Gadjah Mada University Press.

Arwiyanto T, Nurcahyanti SD, Indradewa D & Widada J. 2015. Grafting local commercial tomato cultivar with H7996 and Eg 203 to suppress bacterial wilt (Ralstonia solanacearum) in Indonesia. Proc.IVth IS on Tomato Disease. Act Hort. 1069: 173178.

Asian Vegetable Research and Development Centre (AVRDC). 2013. An Impact Assessment of AVRDC’s Tomato Grafting in Vietnam. AVRDC Publication. 13:773. ISBN 92-9058-203-0.

Bhatti AA, Shamsul H & Rouf AB. 2017. Actinomycetes benefaction role in soil and plant health. Microb Pathogen, 111: 458467. https://doi.org/10.1016/ j.micpath.2017.09.036

Djidonou D, Zhao Xin, Karen EK & Lincoln Z. 2019. Nitrogen accumulation and root distribution of grafted tomato plants as affected by nitrogen fertilization. Hortsciene. 54(11): 19041914. https://doi.org/10.21273/HORTSCI14066-19

Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B & Delattre AS. 2012. Learning from bacteriophages advantages and limitation of bacteriophage and bacteriophage-encoded protein application. Curr Prot Pept Sci. 13:699722. https://doi.org/10.2174/138920312804871193

Gupta K & Yin J. 1995. Metal recognition by in-vitro selection. Biotechnol Bioeng. 45: 458. https://doi.org/10.1002/bit.260450512

Hanson PM, Wang JF, Licardo O, Mah SY, Hartman GL, Lin YC, et al. 1996. Variable reaction of tomato line to bacterial wilt evaluated at several location in Southeast Asia. Hort Sci. 31: 143146. https://doi.org/10.21273/HORTSCI.31.1.143

Hayward AC. 1964. Characteristic of Pseudomonas solanacearum. J App Bact. 27: 265217. https://doi.org/10.1111/j.1365-2672.1964.tb04912.x

Hayward AC. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 29: 65–87. https://doi.org/10.1146/annurev.py.29.090191.000433

Kelman A. 1954. The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology. 44: 693–695.

Kutter E. 1997. Bacteriophages Therapy: Bacteriophages as Antibiotics. http://www.evergreen.edu/bacteriophages/bacteriophagestherapy/bacteriophagestherapy.htm.

Laeshita P, Arwiyanto T. 2017. Resistance test of several tomato varieties to bacterial wilt diseases caused by Ralstonia solanacearum. J Perlindungan Tanaman Indonesia. 21(1): 51–53.

Li H, Wang F, Chen XJ, Shi K, Xia XJ, Conside MG, Yu GQ, Zhou YH. 2014. The sub/supra optimal temperature induced inhibitor of photosynthesis and oxidative damage in cucumber leaves are alleviated by grafting onto fig leaf gourd/lutfa rootstock. Physiol plant. 152: 571584. https://doi.org/10.1111/ppl.12200

Lu TK, Collins JJ. 2007. Dispersing biofilms with engineered enzymatic bacteriophages. Proc. Natl. Acad. Sci. 104: 1119711202. https://doi.org/10.1073/pnas.0704624104

Gill J, Stephen TA. 2003. Bacteriophage’s ecology and plants. APSnet Feature. 117. https://doi.org/10.1094/APSnetFeature-2003-1103

Navitasari L, Joko T, Murti RH, Arwiyanto T. 2020. Rhizobacterial community structure in grafted tomato plants infected by Ralstonia solanacearum. 26 (3): 413420 Biodiversitas. 21(10): 44884495. https://doi.org/10.13057/biodiv/d211055

Navitasari L, Joko T, Murti RH, Arwiyanto T. 2021. Pengaruh tomat sambung pada intensitas penyakit layu bakteri (Ralstonia solanacearum), komponen hasil produksi, dan kualitas buah. J Ilmu Pertanian Indonesia. 26(3): 413420. https://doi.org/ 10.18343/jipi.26.3.413

Nelson DC, Schmelcher M, Rodriguez-Rubio L, Klumpp J, Pritchard DG, Dong S & Donovon DM. 2012. Endolysin as antimicrobials. Adv Virus Res. 83: 299365. https://doi.org/10.1016/B978-0-12-394438-2.00007-4

Nie L, Chen H, Zhang X, Di B. 2010. Photosynthetic ability and mineral concentrations in xylem exudate of grafted and non-grafted watermelon seedlings. Act Hort. 319. https://doi.org/10.17660/ActaHortic.2010.871.43

Pandey A, Shukla A & Majumdar SK. 2005. Utilization of carbon and nitrogen sources by Streptomyces kanamyceticus M27 for the production of an anti-bacterial antibiotic. Afr J Biotechnol. 4: 909910.

Schuch RD, Nelson VA, Fischetti. 2002. A bacteriolytic agent that detects and kill Bacillus antracis. Nature. 418: 884889. https://doi.org/ 10.1038/nature01026

Valerio N, Cristiana O, Vania J, Tatiana B, Carla P, Catarina M, Dana, Adeliade A. 2017. Effect of single and combined use of bacteriophages and antibiotics to inactivate Escherichia coli. Vir Res. 240:817. https://doi.org/10.1016/j.virusres.2017.07.015

Vasavada SH, Thumar JT, Singh SP. 2006. Secretion of a potent antibiotic by salt–tolerant and alkaliphilic actinomycete Streptomyces sannanensis strain RJT-1. Curr Sci. 91:13931397

Yamada T. 2012. Bacteriophages of Ralstonia solanacearum: Their diversity and utilization as biocontrol agents in agriculture. https://www.researchgate.net/publication/22192863. https://doi.org/10.5772/33983

How to Cite
Lisa Navitasari, JokoT., MurtiR. H., & ArwiyantoT. (2022). Aplikasi Actinomycetes dan Bakteriofag pada Tomat Sambung untuk Mengendalikan Penyakit Layu Bakteri Ralstonia solanacearum dan Meningkatkan Hasil Buah. Jurnal Ilmu Pertanian Indonesia, 27(4), 521-527. https://doi.org/10.18343/jipi.27.4.527